
Vision Q.400
Image Processing

Version 7.1.0.0 Q. HALCON Interface – Q.HI

Q.VITEC GmbH
Hagenburger Str. 54, 31515 Wunstorf, Germany
Tel.:+49(0)5031-949 43 20 Fax: +49(0)5031-949 43 29
Internet: www.qvitec.de

 Date: 2014-09-04

http://www.qvitec.de/

Q.VITEC Q.HI - HDevelop Script Interface

2

Table of Contents

Vision Q.400 .. 1

Table of Contents ... 2

1 Introduction .. 4

2 HDevelop Procedures ... 6

2.1 OnLoad .. 7

2.2 GetInfo .. 8

2.3 GetDescription ... 10

2.4 GetParameterDescriptions ... 15

2.5 GetResultDescriptions ... 22

2.6 GetUsedResultDescriptions .. 25

2.7 OnOpenApplication ... 27

2.8 OnSaveApplication .. 28

2.9 OnCloseApplication ... 29

2.10 OnLoadInstance .. 30

2.11 OnSaveInstance... 31

2.12 OnCreateInstance ... 32

2.13 OnCopyInstance .. 33

2.14 OnDeleteInstance .. 34

2.15 OnExecuteInstance ... 35

2.15.1 Adjusted Shape Information ... 39

2.16 OnButtonPressed ... 44

3 Debugging Support ... 47

Q.VITEC Q.HI - HDevelop Script Interface

3

4 Script Helpers ... 49

5 Global Script Variables ... 50

Q.VITEC Q.HI - HDevelop Script Interface

4

1 Introduction

Vision Q.400 utilizes MVTec’s HALCON software for its machine vision algorithms. Sophisticated use of the

HALCON C/C++ library is behind each checker in Vision Q.400. However, as well as C/C++, HALCON
offers a script based language for rapid development of machine vision algorithms and solutions. Scripts are

written with the program HDevelop. These scripts can then be read by Vision Q.400 to provide user defined
checkers.

+

When a script has been successfully loaded by Vision Q.400, it appears as an additional checker in the

checkers toolbar.

This document describes the HDevelop script procedures required by Vision Q.400.

Software requirements

Other than Vision Q.400, the HALCON Development environment is required to create a

script based checker. The HALCON version for developing the script can differ from Vision
Q.400’s HALCON version. However, you need to ensure that only procedures supported by

the Vision Q.400’s HALCON version are used. Scripts can then be developed with HDevelop
and immediately used in Vision Q.400.

Minimum requirements for Vision Q.400 to load a HDevelop script based
checker

To create a script based checker in Vision Q.400, there is surprisingly very little that needs be done. A

HDevelop script just needs to be placed in the .\User Defined Checkers\HDevelop sub-folder of the
Vision Q.400 installation. When Vision Q.400 starts, it will load all valid scripts that it finds (sub-folders are

currently not searched) and make them available on the checkers toolbar.

A big advantage of scripting is that all procedures and their parameters are optional, so you only need to

define the procedures and parameters that will be used. Any procedures or parameters that are not used
can be entirely omitted. If the script is completely empty, default checker properties will be used. Of course

such a script will not be very useful, but it could be the basis for creating a functional checker. Alternatively,
one of the supplied example checkers could be used as a template for a new checker.

Example Scripts

A collection of sample scripts are supplied. For the Demo version they are immediately available, however
for the Full version they need to be renamed in order to be loaded by Vision Q.400. Locate the scripts in

the .\User Defined Checkers\HDevelop folder and rename them by removing the trailing underscore
character.

Script Errors

If a script causes an error during loading, the Error Logging window should provide details of the error. This
window is available from the toolbar or menu item View-Errors. Script runtime exception errors are displayed

in a Vision Q.400 error dialog as well as the error log window.

Transfer Object, Transfer Tuple

Q.VITEC Q.HI - HDevelop Script Interface

5

Some procedures have as parameters a so called “transfer object” and a so called “transfer tuple”. Both are
not processed by Vision Q.400, and intended to be used only inside the HALCON script. They give the

possibility to create them in one procedure and to use them in another, without implementing this “transfer”

inside the HALCON script.

External Script Procedures

All external procedures located in the .\User Defined Checkers folder, including any sub-folders, are
loaded when Vision Q.400 starts. If a new external procedure for a script is created, Vision Q.400 will need

restarting in order to load the new procedure.

User Defined Checker DLLs

Vision Q.400’s script based checkers are based on the “user defined checker” DLL technology. Therefore,

there are many similarities between the two. Also, since HDevelop scripts can be exported to C++,
converting a script based checker to a DLL based checker is relatively easy.

User defined checker DLL’s have the filename extension .uds and are placed in the .\User Defined

Checkers\Uds sub-folder of the Vision Q.400 installation.

Q.VITEC Q.HI - HDevelop Script Interface

6

2 HDevelop Procedures

Vision Q.400 uses script procedures with defined names and parameters. All defined procedures and their

parameters are optional. If a procedure contains extra non Vision Q.400 parameters, then these will be
ignored.

Essentially the procedures can be split into two groups. The first group is related to loading and giving the

identity of the user defined checker. The second group is related to usage of the checker in an application.

Checker load and identity procedures

This group of procedures gives a checker its identity and determines its appearance in Vision Q.400. They
are called once only when Vision Q.400 starts up and loads the checker.

 OnLoad First procedure to be called when loading the checker.

 GetInfo Determines checker identity.

 GetDescription Describes the checker’s general characteristics.

 GetParameterDescriptions Describes parameters used by the checker.

 GetResultDescriptions Describes results provided by the checker.

 GetUsedResultDescriptions Describes the results that can be used from a previous checker.

 OnOpenApplication Is called when an application is opened.

 OnCloseApplication Is called when an application is closed.

If you modify any of these procedures, except for OnOpenApplication and OnCloseApplication, you need to

restart Vision Q.400 in order for the changes to be realized.

Checker instance procedures

The instance group of procedures relate to each usage of the checker in the application. In other words, you
create a checker instance when you insert a checker into the application, and thereby add it to the sequence

list. Instance type procedures are called, when appropriate, for each checker instance in the sequence list.

 OnLoadInstance A checker instance is loaded (Vision Q.400 loads the

application).

 OnSaveInstance A checker instance is saved (Vision Q.400 saves the

application).

 OnCreateInstance A checker instance is created (user inserts a checker).

 OnCopyInstance A checker instance is copied (user copies a checker).

 OnDeleteInstance A checker instance is deleted (user deletes a checker).

 OnExecuteInstance A checker instance is executed.

 OnButtonPressed A specific dialog button for the checker instance is pressed.

If you modify any of these procedures, no restart of Vision Q.400 is required in order to realize the changes.

Q.VITEC Q.HI - HDevelop Script Interface

7

2.1 OnLoad

Name

OnLoad — First procedure that is called when loading the checker. Called once only at startup.

Synopsis

OnLoad(: : LanguageId: LoadResult)

Description

Used to give the script an opportunity to decide whether the checker is to be loaded or not. For instance,

this may be due to a language mismatch between Vision Q.400 and the script. If the checker is not loaded,
it will not appear as an icon or menu entry in Vision Q.400. However, there will be an information entry

added to the “Error Logging” window.

Parameters

 LanguageId (input_control) integer → (integer)

Language that Vision Q.400 is running as.

The following table lists the supported values.

LanguageId Value Meaning

1031 German

1033 English (United States)

1036 French

 LoadResult (output_control) integer → (integer)

Result of the OnLoad procedure. Possible values are:

0 => The checker will not be loaded.

> 0 The checker will be loaded (Default)

Example

* For readability, define the possible LanguageId’s.
LANGUAGE_GERMAN := 1031
LANGUAGE_ENGLISH := 1033
LANGUAGE_FRENCH := 1036

* Script is only for English use.
if(LanguageId = LANGUAGE_ENGLISH)
 LoadResult := 1
else
 LoadResult := 0
endif
return ()

Q.VITEC Q.HI - HDevelop Script Interface

8

2.2 GetInfo

Name

GetInfo — called to get initial checker information. Called once only at startup.

Synopsis

GetInfo(: : : Info)

Description

The returned information determines the checker naming, licensing and required HALCON version.

Key value pairs are added to the output tuple. e.g. Info := [Info,0,'Example Company'] appends the key 0 and

value 'Example Company' to the output tuple Info.

For clarity, we assign the key values to tuples with an understandable name.
INFO_COMPANY_NAME := 0
INFO_HALCON_VERSION := 1
INFO_HALCON_REVISION := 2
INFO_SCRIPT_LICENSE := 3

The following table describes the key value pairs.

Key Default Value Values and Examples
INFO_COMPANY_NAME 'Example Company' Any alphanumeric name. e.g. 'Company XYZ'.

The company name is displayed in the dialog under the

menu point Help/About Vision Q.400 Plug-Ins. For
example:

INFO_COMPANY_NAME and the parameter

DESCRIPTION_NAME of the procedure GetDescription()

are internally used to identify an user defined checker in a

stored application. Therefore if either of these values are
changed, an application that was saved with the old

names cannot be read. So it is strictly recommended not
to change INFO_COMPANY_NAME or

DESCRIPTION_NAME.
INFO_HALCON_VERSION HALCON Version of

running Vision Q.400.
This means that by

default an attempt to
load the script will be

made by all versions of
Vision Q.400.

Only set this key if you wish to restrict the script to

running with a minimum HALCON version. For instance,
the script uses functionality that is not available in lower

versions of HALCON. Such functionality may lead to
unexpected results or fatal errors in lower HALCON

versions.

e.g. setting to ‘10’ will ensure that the script only runs

with Vision Q.400 Version 6.0 and newer (HALCON

version 10.0 is used starting with this version).
INFO_HALCON_REVISION HALCON Revision of

running Vision Q.400.

This means that by

default an attempt to

load the script will be
made by all versions of

Vision Q.400.

Only use if you need to specify a minimum revision of the

specified version to be required for the script. For
instance, the script uses functionality that is not available

in lower revisions of HALCON. Such functionality may lead
to unexpected results or fatal errors in lower HALCON

revisions.

e.g. setting to ‘1’, with version ‘10’ would mean Vision
Q.400 with HALCON 10 revision 1 as a minimum.

Q.VITEC Q.HI - HDevelop Script Interface

9

INFO_SCRIPT_LICENSE No license is required. Value Meaning

1(or do not provide the

parameter at all, it has the

same effect)

Licensed. Ensure that the

procedure is password

protected.

0 Not licensed. The script

will not be loaded.

'SCRIPT_PEW' A valid license for the

string will be checked on

the dongle.

Parameters

 Info (output_control) any → (tuple)

Example

* Identifiers (The values should not be changed)
INFO_COMPANY_NAME := 0
INFO_HALCON_VERSION := 10
INFO_HALCON_REVISION := 2
INFO_SCRIPT_LICENSE := 3
Info := [INFO_COMPANY_NAME,'Example Company']
* HALCON version information. Do not use get_system for this. If required, hard code the minimum version
* that the script is meant to run under.
Info := [Info,INFO_HALCON_VERSION,'10.0']
* HALCON revision. Use in conjuction with the version if you want to specify a minimum revision.
Info := [Info,INFO_HALCON_REVISION,'0']

Q.VITEC Q.HI - HDevelop Script Interface

10

2.3 GetDescription

Name

GetDescription — called to obtain a list of the checkers features. Called once only at startup.

Synopsis

GetDescription(: : : Description)

Description

A procedure to get the Description is called once upon loading the checker when Vision Q.400 starts. The
returned information specifies various properties of the checker. For instance, the checker’s name and icon

in the checker toolbar, which shapes it supports and whether it wants to use any of the inbuilt filtering,
exposure adjustment or thresholding.

Parameters

 Description (output_control) any → (integer / string)

Key/Value pairs or entries are added to the output tuple.

e.g
 Description := [Description, 0, ‘Checker ABC’]

This appends the key 0 and value 'Checker ABC' to the output tuple Description.

For clarity in a script, we assign the key values to tuples with an understandable name.
DESCRIPTION_VERSION := 0
DESCRIPTION_NAME := 1
DESCRIPTION_SHORT_NAME := 2
DESCRIPTION_SHAPES := 3
DESCRIPTION_COLORS := 4
DESCRIPTION_GRAY_FILTERS := 5
DESCRIPTION_BINARY_FILTERS := 6
DESCRIPTION_EXPOSURE_ADJUSTMENT := 7
DESCRIPTION_POS_ROT := 8
DESCRIPTION_BINARIZATION_PAGES := 9
DESCRIPTION_MAX_OBJECTS := 10
DESCRIPTION_CHECKER_ICON := 11
DESCRIPTION_PARAMETER_BUTTON_TIP := 12
DESCRIPTION_DEPENDENCIES_BUTTON_TIP := 13

Key Default Values and Examples
DESCRIPTION_VERSION

Version number of the user
defined checker.

1 Any integer > 0

The least significant 4 bytes of the integer are used for

the version. This gives the possibility to specify up to a
four-digit version number. Generally a maximum of two

digits will be required. The version is best defined by
entering a hexadecimal value.

For example:

Value Represents version

no.

0x10000000 1.0.0.0

0x1001 1.1

0x010a 1.10

The version of each plug-in script is displayed by Vision

Q.400 in the dialog under the menu point Help/About

Vision Q.400 Plug-Ins.

Q.VITEC Q.HI - HDevelop Script Interface

11

Key Default Values and Examples
DESCRIPTION_NAME

Name of the checker.

Name that appears in the

Checker menu or toolbar of
Vision Q.400.

Script file

name,

without an

extension.

Any alphanumeric names.

e.g. “Checker ABC”.

DESCRIPTION_NAME and the parameter

INFO_COMPANY_NAME of the procedure GetInfo() are

internally used to identify an user defined checker in a
stored application. This means that if either

DESCRIPTION_NAME or INFO_COMPANY_NAME are

changed, an application that uses the old names cannot
be read. Therefore it is strictly recommended not to

change DESCRIPTION_NAME or INFO_COMPANY_NAME.
DESCRIPTION_SHORT_NAME

Short name of the checker.

Upper case

of script file
name

without an
extension.

Any alphanumeric name. Space characters are not

allowed. First character cannot be numeric.

For example, checker with short name NCC is shown.

A suffix in the following format is automatically appended

to the short name when a checker is added to the

sequence list of a camera.

[<Camera No.>;<Checker No.>]
where <Camera No.> is the camera to which the checker belongs and
<Checker No.> is the number of that particular checker’s instance for
the specified camera.

This name, including suffix, also serves as the default

ActiveX name.
DESCRIPTION_SHAPES

Possible shapes allowed for

defining the checkers shape
region.

rectangle

ellipse

polygon

doughnut

object

Comma separated list of any of the following:
rectangle rectangle ->

ellipse ellipse ->

doughnut doughnut ->

polygon line ->

object shape

NOTE: there needs to be a space character before the ->

e.g.
Description := [Description,DESCRIPTION_SHAPES,'rectangle,
ellipse, doughnut, line ->']

Additionally, a blank string can be defined. e.g.
Description := [Description,DESCRIPTION_SHAPES,'']

This would result in a checker with no shape.

DESCRIPTION_BINARIZATION_PAGES

Availability of the Algorithm,

Color Selection and Channel
Selection tab in the checker

properties dialog. This
provides Vision Q.400’s default

binarization controls.

0 0 => No tab for binarization is shown.

1 => Algorithm tab. When the checker works on a color

image, the color selection and channel selection tab are

included.

3 => Algorithm tab with “Object type” option. When the

checker works on a color image, the color selection and

channel selection tab are included.

4 => Only the “Color Selection” tab is available.

8 => Only the “Channel Selection” tab is available

This has to be set to OFF if the checker has no shapes

(see DESCRIPTION_SHAPES)

Q.VITEC Q.HI - HDevelop Script Interface

12

Key Default Values and Examples
DESCRIPTION_GRAY_FILTERS

Availability of Gray filters on

the Image Filters tab of the
checker properties dialog.

0 0 => OFF

1 => ON

This has to be set to OFF if the checker has no shapes

(see DESCRIPTION_SHAPES)

DESCRIPTION_BINARY_FILTERS

Availability of Binary filters on

the Image Filters tab of the

checker properties dialog.

1 0 => OFF

1 => ON

This has to be set to OFF if the checker has no shapes

(see DESCRIPTION_SHAPES)

DESCRIPTION_EXPOSURE_ADJUSTMENT

Availability of Exposure

Adjustment on the

Dependencies tab of the
checker properties dialog.

ON

or

ON distinguishing between

upper and lower

2 0 => OFF

1 => ON

2 => ON distinguishing between Upper and Lower

This has to be set to OFF if the checker has no shapes

(see DESCRIPTION_SHAPES)

DESCRIPTION_POS_ROT

The checker can use a position

rotation adjustment.

1 0 => Not available

1 => Available

This has to be set to 0 (Not available) if the checker has
no shapes (see DESCRIPTION_SHAPES)

Q.VITEC Q.HI - HDevelop Script Interface

13

Key Default Values and Examples
DESCRIPTION_COLORS

Specifies which colors of the

checker are allowed to be
modified in the dialog under

the Vision Q.400 menu
Application -> Colors

All colors

for the

checker can

be
changed.

shape

pick point

object

result

slice level

e.g. 'shape, result'

DESCRIPTION_MAX_OBJECTS

Maximum number of detected

objects for which results will
be calculated.

128 This must be bigger than zero.

DESCRIPTION_CHECKER_ICON

The icon given to the checker

in the checkers toolbar and
beside it’s entry in the menu.

26

Number of one of the provided icons OR any bitmap

(BMP) filename. For a bitmap, it should be at least 16x16

pixels in size.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51 52 53 54 55

e.g. '35'

e.g. 'Checker.bmp'

The bitmap file should be located in the same folder as

the script file.
DESCRIPTION_PARAMETER_BUTTON_TI
P

No tooltip Tooltip belonging to the button on the Parameters page

DESCRIPTION_DEPENDENCIES_BUTTON
_TIP

No tooltip Tooltip belonging to the button on the Dependencies page

Example

* Version of the script (0x0010a => 1.10)
Description := [DESCRIPTION_VERSION,0x0010a]
* The following two values need to be unique for each script
Description := [Description,DESCRIPTION_NAME,'Example Script 1']
Description := [Description,DESCRIPTION_SHORT_NAME,'HS_EX1']
* Shapes available for checker - default is "rectangle, ellipse, polygon, object"
Description := [Description,DESCRIPTION_SHAPES,'rectangle, ellipse, doughnut']
* Specify the checker objects types that can have their color changed. Default: all checker object types.
Description := [Description,DESCRIPTION_COLORS,'shape']
* Gray filters setting - default is OFF
Description := [Description,DESCRIPTION_GRAY_FILTERS,1]
* Binary filters setting - default is ON
Description := [Description,DESCRIPTION_BINARY_FILTERS,1]
Description := [Description,DESCRIPTION_EXPOSURE_ADJUSTMENT,1]
Description := [Description,DESCRIPTION_POS_ROT,0]
Description := [Description,DESCRIPTION_BINARIZATION_PAGES,3]
Description := [Description,DESCRIPTION_MAX_OBJECTS,128]

Q.VITEC Q.HI - HDevelop Script Interface

14

* Icon can be either a bitmap file name (must be in same directory as script) or an index of a standard
supplied bitmap. Indexes 0-31 are valid.
Description := [Description,DESCRIPTION_CHECKER_ICON,'31']
Description := [Description,DESCRIPTION_PARAMETER_BUTTON_TIP,'Click here to execute OnButtonPressed']
Description := [Description,DESCRIPTION_DEPENDENCIES_BUTTON_TIP,'Click here to execute OnButtonPressed']

Q.VITEC Q.HI - HDevelop Script Interface

15

2.4 GetParameterDescriptions

Name

GetParameterDescriptions — called to obtain a list of parameters that the checker wishes to show in the
user interface. Called once only at startup.

Synopsis

GetParameterDescriptions(: : : ParameterDescriptions, SlaveDescriptions, AcessMode, Properties)

Description

Used for specifying user modifiable parameters required by the checker. Parameters can be conditionally

displayed.

Parameter

 ParameterDescriptions (output_control) any → (integer / real / string)

Tuple containing entries for each parameter that the checker needs to expose to the user. For each

parameter type, the number of entries in the tuple may differ.

NOTE: Parameter type names are case sensitive.

NOTE: In the following description the index for each parameter type starts with 0, which is not correct in a
real script, since the descriptions of all parameters are contained in one tuple.

NOTE: If the tuple does not start with a "Group" parameter, a "Group" parameter called "Group 1" with no
help text is inserted at the head of the tuple.

Group

 Requires 3 tuple entries

 May not be empty. In other words, it must be followed by one or more parameter descriptions.

 If a Group parameter is not defined, a group named "Parameters" with no help text is used.

 If the name of the group is the same as the name of the first parameter it contains, then the
group item will not be expandable in the list (see diagram below). This feature is especially useful
for "Group" parameters which contain only one parameter.

Entry No. Type Description

0 string 'Group'

1 string Name of the parameter group.

2 string A help text displayed for the parameter group. This text may be empty.

Non-Group Parameters.

The tuple should contain at least one non-group parameter.

Q.VITEC Q.HI - HDevelop Script Interface

16

The following non-group parameters can be defined.

Bool Long Enum

Double String

Bool

 Requires 4 tuple entries.

 e.g.
ParameterDescriptions := ['Group','Can Touch Shape','Select "TRUE" if it is allowed that an object touches the checker
shape, "FALSE" otherwise.']

ParameterDescriptions := [ParameterDescriptions,'Bool','Can Touch Shape','true','Select "TRUE" if it is allowed that an
object touches the checker shape, "FALSE" otherwise.']

Entry No. Type Description

0 string 'Bool'

1 string Name of the parameter.

2 string Default value of the parameter: "true" or "false".

3 string A help text displayed for the parameter. This text may be empty.

Long

 Requires 7 tuple entries.

 e.g.
LONG_MIN := -0x7fffffff-1

LONG_MAX := 0x7fffffff

ParameterDescriptions := [ParameterDescriptions,'Group','Allowed Judgement Limits','The limits of the different
judgements can be adjusted here.']

ParameterDescriptions := [ParameterDescriptions,'Long','Very Bad',99,LONG_MIN,LONG_MAX,'','Upper limit of judgement
"Very Bad".']

ParameterDescriptions := [ParameterDescriptions,'Long','Bad',999,LONG_MIN,LONG_MAX,'GE','Upper limit of judgement
"Bad".']

ParameterDescriptions := [ParameterDescriptions,'Long','Good',9999,LONG_MIN,LONG_MAX,'GE','Upper limit of judgement
"Good".']

Entry No. Type Description

0 string 'Long'

1 string Name of the parameter.

2 integer Default value of the parameter.

3 integer Minimum value of the parameter.

4 integer Maximum value of the parameter.

5 string Dependency to the parameters predecessor. The predecessor has to be a

"Long" parameter.

Set to empty string, if a dependency does not exist.

Set to "GT" if the parameter has to be bigger as it's predecessor in the list.

Set to "GE" if the parameter has to be bigger as or equal to it's predecessor

in the list.

6 string A help text displayed for the parameter. This text may be empty.

Q.VITEC Q.HI - HDevelop Script Interface

17

Enum

 Described by a variable number of tuple entries.

 e.g.
ParameterDescriptions := [ParameterDescriptions,'Enum','Allowed Judgement',0,5,'Ignore Judgement', 'Very Bad', 'Bad',
'Good', 'Very Good','Select the allowed judgement for the found objects.']

Entry No. Type Description

0 string 'Enum'

1 string Name of the parameter.

2 integer Default index into the enumeration array. The index starts with zero.

3 integer Number of enumeration values. This number is limited to 15.

4 .. (4+Entry 3 –

1)
string Name of the enumeration value.

4 + Entry 3 string A help text displayed for the parameter. This text may be empty.

Double

 Requires seven tuple entries.

 e.g.
ParameterDescriptions := [ParameterDescriptions,'Double','MinScore',0.1,0.1,1.0,'','Minimum score']

Entry No. Type Description

0 string 'Double'

1 string Name of the parameter.

2 real Default value of the parameter.

3 real Minimum value of the parameter.

4 real Maximum value of the parameter.

5 string Dependency to the parameters predecessor. The predecessor has to be of a
"Double" parameter.

Set to empty string, if a dependency does not exist.

Set to "GT" if the parameter has to be bigger than it's predecessor in the

list.

Set to "GE" if the parameter has to be bigger as or equal to it's predecessor

in the list.

6 string A help text displayed for the parameter. This text may be empty.

String

 Requires 4 entries.

 e.g.
ParameterDescriptions := [ParameterDescriptions,'String','Logfile','C:\\P400\\ScriptLog.txt','Specifies logfile']

Entry No. Type Description

0 string 'String'

1 string Name of the parameter.

2 string Default value of the parameter.

3 string A help text displayed for the parameter. This text may be empty.

Q.VITEC Q.HI - HDevelop Script Interface

18

Changing a parameter name

Parameter names are saved together with their value, so if a name is changed in the script it will not receive

the correct value when applications saved from old scripts are loaded. In this case the old name should be
kept in the parameter descriptions list and be set as hidden via the Fehler! Verweisquelle konnte nicht

gefunden werden. parameter (see below). The script can then deal with the old parameter if it was used.

Different languages

As mentioned above, parameter names are stored in the application. This applies to group names too.

Therefore a problem is likely to occur if the script language changes. For example, an application saved with

an English script is read using a German script. Since the English parameter names are different, the values
cannot be assigned when the application is read. Unassigned parameters will receive their default value.

To solve this problem, every parameter, group, and enumeration value can be assigned a language

independent name and a localized name. Note that if a parameter receives a language independent name,
its group needs one as well.

When a language independent name is used, it is saved with the application and should also be used for

access via ActiveX. The localized name can then be safely modified without causing an issue in the
application or ActiveX client.

To specify two names, the language independent name should follow the localized name. They should be

separated by the "@A@" character sequence.

For example, "Steigende Flanke@A@Rising Edge" would result in a localized name "Steigende Flanke" and a

language independent name "Rising Edge".

 SlaveDescriptions (output_control) any → (integer / string)

This tuple describes the visibility dependencies between parameters. A visibility dependencies means that

the visibility of a parameter (or a parameter group) depends on the current value of another parameter. (For

an example see the indicators in Vision Q.400.)

A parameter that controls the visibility of another parameter (or parameter group), is called the master, and

the dependent parameter (or parameter group) is called the slave. Only Bool and Enum type parameters can

be master.

For every visibility dependency, the number of entries in the tuple may differ. In the following description,
the index for each visibility dependency starts with 0

Each parameter or group is defined by 4 tuple entries as follows:

Entry No. Type Description

0 string Master’s group name

1 string Master’s parameter name

2 string Slave’s group name

3 string Slave’s parameter name. If this is an empty string, the slave is the whole

group, as given by the name in entry 2.

4 integer Number of values of the master, for which the slave is visible. This number is

limited to 15. If this entry is 0, the slave parameter or parameter group is

always hidden. The master is not considered in this case.

5..(5+Entry 4 –

1)
e.g.

Entry 4 is 1 => 5..5

Entry 4 is 2 => 5..6

string Name of the enumeration value of the master, for which the slave is visible.

For all other values of the master the slave is invisible.

Q.VITEC Q.HI - HDevelop Script Interface

19

 AccessMode (output_control) any → (integer / string)

Tuple which contains additional info about the access mode of parameters. The access mode info allows

definition of parameters or groups of parameters that are to be read only or hidden in the user interface.

The parameters are nevertheless saved in the application.

The access mode of a parameter or group is defined by for tuple entries as follows:

Entry No. Type Description

0 string The name of the group.

1 string The name of the parameter (or empty if the access mode belongs to a whole
group).

NOTE: If the group has only one parameter and both the group and parameter

names are the same, set this empty.

2 integer Read only flag.

Set to 1 if the parameter or group is read only, otherwise 0.

3 integer Hidden flag.

Set to 1 if the parameter or group is hidden, otherwise 0.

 Properties (output_control) any → (integer / string)

Tuple which contains additional info about the properties of parameters.

The following properties are available:

Property Allowed

for

Parameter

Type

Description

<CheckBox> Bool In the GUI of Vision Q.400 a check box is displayed to select / deselect

the value.

<Color> Long The long parameter is a color value.

In the GUI of Vision Q.400 an additional color selection box is displayed to

change the parameter’s color value.

<SpinButton> Long In the GUI of Vision Q.400 an additional spin button is displayed to

change the parameter’s value.

<File> String The string parameter represents a file name.

In the GUI of Vision Q.400 an additional file selection dialog is displayed

to change the parameter’s value.

The property <File> has three additional parameters:

OpenOrSave:

Open: an "open" file dialog is displayed.

Save: a "save" file dialog is displayed.

DefaultExtention:

The default extension for the file dialog, e.g. "*.txt".

FileFilter:

The file filter for the file dialog, e.g. "Text Files (*.txt)|*.txt||".

The following example opens text files:

<File>Open,*.txt, Text Files (*.txt)|*.txt||

Q.VITEC Q.HI - HDevelop Script Interface

20

<Directory> String The string parameter represents a directory name.

In the GUI of Vision Q.400 an additional directory selection dialog is

displayed to change the parameter’s value.

The property <Directory> has one additional parameter:

OpenOrSave:

Open: an "open" directory dialog is displayed.

Save: a "save" directory dialog is displayed.

The following example opens an existing directory:

<Directory>Open

A property of a parameter is defined by three tuple entries as follows:

Entry No. Type Description

0 string The name of group.

1 string The name of the parameter.

2 integer The property of the parameter.

Q.VITEC Q.HI - HDevelop Script Interface

21

Example

ParameterDescriptions := ['Group','Can Touch Shape','Select "TRUE" if it is allowed that an object touches
the checker shape, "FALSE" otherwise.']
ParameterDescriptions := [ParameterDescriptions,'Bool','Can Touch Shape','true','Select "TRUE" if it is
allowed that an object touches the checker shape, "FALSE" otherwise.']
ParameterDescriptions := [ParameterDescriptions,'Group','Allowed Judgement','Select the allowed judgement
for the found objects.']

ParameterDescriptions := [ParameterDescriptions,'Enum','Allowed Judgement',0,5,'Ignore Judgement', 'Very
Bad', 'Bad', 'Good', 'Very Good','Select the allowed judgement for the found objects.']

ParameterDescriptions := [ParameterDescriptions,'Group','Allowed Judgement Limits','The limits of the
different judgements can be adjusted here.']
LONG_MIN := -0x7fffffff-1
LONG_MAX := 0x7fffffff
IGNORE_JUDGEMENT := 0
VERY_BAD := 1
BAD := 2
GOOD := 3
VERY_GOOD := 4

ParameterDescriptions := [ParameterDescriptions,'Long','Very Bad',99,LONG_MIN,LONG_MAX,'','Upper limit of
judgement "Very Bad".']
ParameterDescriptions := [ParameterDescriptions,'Long','Bad',999,LONG_MIN,LONG_MAX,'GE','Upper limit of
judgement "Bad".']
ParameterDescriptions := [ParameterDescriptions,'Long','Good',9999,LONG_MIN,LONG_MAX,'GE','Upper limit of
judgement "Good".']
ParameterDescriptions := [ParameterDescriptions,'Group','Logfile','Specifies the logfile that will be
created.']
ParameterDescriptions := [ParameterDescriptions,'String','Logfile','ScriptLog.txt','Specifies the logfile
that will be created.']
ParameterDescriptions := [ParameterDescriptions,'Group','MinScore','']
ParameterDescriptions := [ParameterDescriptions,'Double','MinScore',0.1,0.1,1.0,'','Minimum score of the
returned poses']

* Use SlaveDescriptions to define parameters that are conditionally displayed according to another
parameter’s setting.
* ‘Allowed Judgement Limits’ are only shown in ‘Allowed Judgement’ is NOT ‘Ignore Judgement’
SlaveDescriptions := ['Allowed Judgement','Allowed Judgement','Allowed Judgement Limits','',4,'Very
Bad','Bad','Good','Very Good']

* Use AccessMode to set parameters Hidden or Read Only.
AccessMode := []
* Note that since the group and parameter names are identical, and there is only one parameter, the
parameter name is blank.
* Make ‘Logfile’ Hidden
AccessMode:= [AccessMode,'Logfile','',0,1]
* Make ‘MinScore’ read only.
AccessMode:= [AccessMode,' MinScore ','',1,0]

Q.VITEC Q.HI - HDevelop Script Interface

22

2.5 GetResultDescriptions

Name

GetResultDescriptions — called to obtain the number and type of results supplied by the checker. Called
once only at startup.

Synopsis

GetResultDescriptions(: : : ResultDescriptions)

Description

The returned information specifies the number and type of results supplied by the checker. The results are

displayed on the Result tab of the checker’s properties dialog.

Parameters

 ResultDescriptions (output_control) any → (integer / string)

Tuple containing 4 entries for each result that the checker wants to expose to the user on the Result tab. In

other words each column of the table is defined by 4 entries in this tuple. The results in the table shown

above are defined by 4 X 4 = 16 entries.

The names at the end of each description are used in error messages.

Entries for a “set” of results.

Entry No. Type Description

0 string Result Type

The following values are supported.

Result

Type
Description

'Double' The result is one double value.

'String' The result is one string value.

'Angle180' The result is one double value, representing an angle in the
range of 0 .. 180 degrees.

'Angle360' The result is one double value, representing an angle in the

range of 0 .. 360 degrees.

'Coordinate' The results are two double values, the first represents the X

coordinate, and the second the Y coordinate.

'Rectangle' The results are four double values, the first represents the X
coordinate of the upper left corner, the second the Y

coordinate of the upper left corner, the third the X

coordinate of the bottom right corner, and the forth the Y
coordinate of the bottom right corner.

e.g. 'Coordinate'

1 string Column header of the column in which the result is displayed.

e.g. 'Coordinates'

Q.VITEC Q.HI - HDevelop Script Interface

23

2 string Draw Hint

The draw hint contains information about how a result should be drawn.

The drawing order is as follows:

1. The objects given in the in OnExecuteInstance output parameter

ObjectsWithResults.

2. The objects given in the in OnExecuteInstance output parameter

ObjectsToDraw.

3. The results according to their draw hints.

The following values are supported for the different Result Types:

Result

Type
Available draw

Hints.
Description

Double '' The result is not drawn.

String '' The result is not drawn.

Angle180

Angle360

'' The result is not drawn.

'arrow<position>' Draws an arrow with the direction of

the angle result at position

<position>. <position> has to be the
name of a "Coordinate" result, e.g.

"arrow<Center>" draws the arrow at

the position of the "Coordinate" result
Center. If <position> is empty, that

means only "arrow" is given, the
position of the arrow has to be given

by a "Coordinate" result which

immediately precedes the angle
result.

Coordinate '' The result is not drawn.

'cross' Draws a cross at the position given by

the "Coordinate" result.

'circle<radius>'

Draws a circle with the radius

<radius> at the position given by the
"Coordinate" result. <radius> has to

be the name of a "Double" result. E.g.

"circle<Radius>" draws a circle with
the radius given by the "Double"

result Radius. If <radius> is empty,
that means only "circle" is given, the

radius of the circle has to be given by

a "Double" result which immediately
follows the "Coordinate" result.

'circlecross<radius>' Combination of "circle<radius>" and

"cross". Means a circle with a center.

Rectangle 'rectangle' Draws the rectangle given by the
"Rectangle" result.

e.g. 'cross'

3 string A help text displayed for the result as a tooltip. This text may be empty.

Q.VITEC Q.HI - HDevelop Script Interface

24

If the column header names of consecutive result descriptions are the same, these results are displayed in
separate columns, but they will share the same column header.

e.g.
ResultDescriptions := [ResultDescriptions, 'Angle180', 'Angles', '', '']

ResultDescriptions := [ResultDescriptions, 'Angle360', 'Angles', '', '']

The two values of a "Coordinate" result, and the four values of a "Rectangle" result, share the same column

header, too.

Different languages

User defined checker results can be accessed by an ActiveX client. This is done with the help of the name of

a result. Therefore an issue may occur if the language of a user defined checker dll is for example changed

English to German, and an ActiveX client was written using the English names of results. Since the English
names of results used in the ActiveX client do not fit the current German names of results, the results cannot

be accessed by the client using the English names: these names are unknown to the user defined checker.

To solve this problem, every result can be assigned a so called language independent name in addition to

the localized name. If such a language independent name is assigned, it is used to access the result values

by an ActiveX client. That means as long as the "language independent" name is not changed, the language
of the "normal" name can be changed, but the checker's results can be accessed by an ActiveX client without

problems.

To assign a language independent name, it needs to be appended to the localized name. The two names

should be separated by the "@A@" character sequence.

For example, "Fläche@A@Area" would result in a localized name "Fläche", but for the access by an ActiveX

client "Area" should be used.

Example

ResultDescriptions := []
ResultDescriptions := ['Coordinate','Coordinates','cross','']
ResultDescriptions := [ResultDescriptions,'Angle360','Angle','arrow','']
ResultDescriptions := [ResultDescriptions,'Double','Area','','']
ResultDescriptions := [ResultDescriptions,'String','Judgement','','']
return ()

Q.VITEC Q.HI - HDevelop Script Interface

25

2.6 GetUsedResultDescriptions

Name

GetUsedResultDescriptions — called to obtain a list of the results that should be obtainable from a previous
checker. Called once only at startup.

Synopsis

GetUsedResultDescriptions(: : : UsedResultDescriptions, WhenToCall)

Description

GetUsedResultDescriptions is for specifying results that the checker is able to receive from a previous

checker in the sequence list. If this procedure is implemented, an extra tab named “Used Results” is added
to the checker’s property dialog. The “Used Results” property page contains a list of results that the checker

can make use of in the OnExecute or OnButtonPressed procedures.

The Used Results are displayed in the parameters tables, as shown in the above example.

If the procedure is not defined, or the tuple UsedResultDescriptions is empty, the Used Results tab of the

checker’s property page will not be available.

Parameters

 UsedResultDescriptions (output_control) any → (string)

Tuple containing string entries that define the table of Parameters on the Used Results tab of the checker’s

property dialog.

3 tuple entries define each row in the parameters table. The parameters are listed in groups in the table. To

define a group the tuple receives a Group definition.

Entry No. Supported

values
Meaning in parameters table

0 'Group' group
'Double' double value result can be dropped into table
'String' string value result can be dropped into table
'Angle' angle value result (any type) can be dropped into table
'Angle180' Inertia Axis (0-180) type angle result value can be dropped into table
'Angle360' Orientation (0-360) type angle result value can be dropped into table
'Coordinate' X or Y coordinate result value can be dropped into table
'CoordinateX' X coordinate result value can be dropped into table
'CoordinateY' Y coordinate result value can be dropped into table

1 Any text Name in the first column of the parameters table.

2 Any text Help text in the area below the parameters table.

Q.VITEC Q.HI - HDevelop Script Interface

26

 WhenToCall (output_control) integer → (integer)

An Integer value, which defines how Vision Q.400 will behave if it should call a procedure which uses results,

e.g. OnExecuteInstance(), and the execution result of at least one of the checkers, which calculate the

results, is not OK.

0: The procedure will not be called. This is the default.

1: The procedure will be called if the execution results of the not OK checkers can be forced to NG.

2: The procedure will always be called. This means that the execution results of the not OK checkers are

ignored.

Example

For example, in the ‘Used Results’ table that is shown above.

The first group called ‘String results’ is defined in a Group definition:
 UsedResultDescriptions := ['Group','String results', 'Demonstrates the use of a string result']

Following the group definition are the result entries, in this case just one being appended to the tuple:
 UsedResultDescriptions := [UsedResultDescriptions,'String','String result', 'Demonstrates the use of a
string result']

A new group definition then follows:
 UsedResultDescriptions := [UsedResultDescriptions,'Group','Double results', 'Demonstrates the use of
double results']

Followed by the result entries:
UsedResultDescriptions := [UsedResultDescriptions,'Double','Double result', 'Demonstrates the use of a
double result']
UsedResultDescriptions := [UsedResultDescriptions,'CoordinateX','X Coordinate result', 'Demonstrates the
use of an X coordinate result']
UsedResultDescriptions := [UsedResultDescriptions,'CoordinateY','Y Coordinate result', 'Demonstrates the
use of a Y coordinate result']
UsedResultDescriptions := [UsedResultDescriptions,'Angle','Angle result', 'Demonstrates the use of an
angle result']
UsedResultDescriptions := [UsedResultDescriptions,'Angle180','Angle180 result', 'Demonstrates the use of
an angle result']
UsedResultDescriptions := [UsedResultDescriptions,'Angle360','Angle360 result', 'Demonstrates the use of
an angle result']

Q.VITEC Q.HI - HDevelop Script Interface

27

2.7 OnOpenApplication

Name

OnOpenApplication — called when an application is opened.

Synopsis

OnOpenApplication(: : Start, Name, Result)

Description

OnOpenApplication is called for each script when an application is opened. The procedure is called even if
the script is not used in the application. Note that this could unnecessarily reduce performance if scripts that

use this functionality are never used.

Parameters

 Start (input_control) any → (integer)

On opening an application the procedure is called twice:

1: the opening of the application is started.

0: the opening of the application is finished.

 Name (input_control) any → (string)

The name of the application which is opened. If Name is empty, an application is not opened, but created.

 Result (input_control) any → (integer)

The result of the opening:

1: the opening of the application was successful.

0: the opening of the application failed.

If bStartOpening is 1, bOpenResult is always 0.

Q.VITEC Q.HI - HDevelop Script Interface

28

2.8 OnSaveApplication

Name

OnSaveApplication — called when an application is saved.

Synopsis

OnSaveApplication(: : Start, Name)

Description

OnSaveApplication is called for each script when an application is saved, and can, for example, be used to

prepare the application saving in the script. The procedure is called even if the script is not used in the
application. Note that this could unnecessarily reduce performance if scripts that use this functionality are

never used.

Parameters

 Start (input_control) any → (integer)

On saving an application the procedure is always called twice:

1: the saving of the application is started.

0: the saving of the application is finished.

 Name (input_control) any → (string)

The name of the application which is saved.

Q.VITEC Q.HI - HDevelop Script Interface

29

2.9 OnCloseApplication

Name

OnCloseApplication — called when an application is closed.

Synopsis

OnCloseApplication(: : Start, Name)

Description

OnCloseApplication is called for each script when an application is closed, and can, for example, be used to

clear memory acquired by the script. The procedure is called even if the script is not used in the application.
Note that this could unnecessarily reduce performance if scripts that use this functionality are never used.

Parameters

 Start (input_control) any → (integer)

On closing an application the procedure is always called twice:

1: the closing of the application is started.

0: the closing of the application is finished.

 Name (input_control) any → (string)

The name of the application which is closed. If Name is empty, an application was never saved.

Q.VITEC Q.HI - HDevelop Script Interface

30

2.10 OnLoadInstance

Name

OnLoadInstance — called when a checker instance has been loaded from file. This occurs when an

application is opened.

Synopsis

OnLoadInstance(Object : ObjectToTransfer : Cookie, CheckerVersion, ParameterValues, TupleObject,

Tuple : TupleToTransfer, NewCookie)

Description

OnLoadInstance is called directly after an instance of the user defined checker is read from a file.

Parameters

 Object (input_object) object(-array)→ object

The content of Object has been loaded by Vision Q.400 from the file. (See OnSaveInstance.)

 ObjectToTransfer (output_object) object(-array) → object

The transfer object of the checker instance. It is given here to give the checker instance the chance to

initialize it with data stored in the input_object Object.

 Cookie (input_control) any → (integer)

Cookie which may help to identify a user defined checker instance. The cookie may especially be useful if the

script manages different information for each instance.

 CheckerVersion (input_control) any → (integer)

The read in checker version. This is the value that was given by the GetDescription procedure.

(see DESCRIPTION_VERSION)

 ParameterValues (input_control) any → (integer / real / string)

Contains the current parameter values in the same order the parameters are given.

 TupleObject (input_control) any → (integer / real / string)

The content of TupleObject has been loaded by Vision Q.400 from the file. (See OnSaveInstance.)

 Tuple (input_control) any → (integer / real / string)

The content of Tuple has been loaded by Vision Q.400 from the file. (See OnSaveInstance.)

 TupleToTransfer (output_control) any → (integer / real / string)

The transfer tuple of the checker instance. It is given here to give the checker instance the chance to

initialize it with data stored in the input_control ObjectTuple.

 NewCookie (output_control) any → (integer)

If set, this new Cookie value will be assigned to this checker instance.

Q.VITEC Q.HI - HDevelop Script Interface

31

2.11 OnSaveInstance

Name

OnSaveInstance — called when a checker instance is about to be saved to file. This occurs on application

save.

Synopsis

OnSaveInstance(ObjectToTransfer : Object : Cookie, ParameterValues, TupleToTransfer : TupleObject,

Tuple)

Description

OnSaveInstance is called directly before an instance of the user defined checker is stored to a file.

Parameters

 ObjectToTransfer (input_object) object(-array)→ object

The transfer object of the checker instance. This is not stored automatically by Vision Q.400 to the file.

Instead it is given here to give the checker instance the chance to insert it, or a part of it, into the

output_object “Object”, which is stored by Vision Q.400 to the file.

 Object (output_object) object(-array) → object

The content of Object is stored by Vision Q.400 to the file. If an object to be stored is an image, the current
domain of the image is stored, too.

Please be aware that if Object contains large objects, e.g. large images, the size of the application file may

increase drastically. And this means that the loading time of the application file may increase drastically, too.

 Cookie (input_control) any → (integer)

Cookie which may help to identify a user defined checker instance. The cookie may especially be useful if the

script manages different information for each instance.

 ParameterValues (input_control) any → (integer / real / string)

Contains the parameter values that will be stored for this checker instance.

 TupleToTransfer(input_control) any → (integer / real / string)

The transfer tuple of the checker instance. This is not stored automatically by Vision Q.400 to the file.

Instead it is given here to give the checker instance the chance to insert it, or a part of it, into the
output_control “TupleObject”, which is stored by Vision Q.400 to the file.

 TupleObject (output_control) any → (integer / real / string)

The content of TupleObject is stored by Vision Q.400 to the file. It is intended to contain information about

the output_object Output, but can be used in another way, too.

 Tuple (output_control) any → (integer / real / string)

The content of Tuple is stored by Vision Q.400 to the file. It is intended to contain information which does

not belong to the output_object Output, but can be used in another way, too.

Q.VITEC Q.HI - HDevelop Script Interface

32

2.12 OnCreateInstance

Name

OnCreateInstance — called when a checker instance is created.

Synopsis

OnCreateInstance(: : Cookie : NewCookie)

Description

OnCreateInstance is called when a new instance of the user defined checker is created, and inserted into the

sequence list.

Parameters

 Cookie (input_control) integer → (integer)

Cookie which may help to identify a user defined checker instance. The cookie may especially be useful if

the script manages different information for each instance.

 NewCookie (output_control) integer → (integer)

If set, this new Cookie value will be assigned to this checker instance.

Q.VITEC Q.HI - HDevelop Script Interface

33

2.13 OnCopyInstance

Name

OnCopyInstance — called when a checker instance is copied.

Synopsis

OnCopyInstance(ObjectToTransfer : NewObjectToTransfer : Cookie, CookieSource, TupleToTranfer :
NewTupleToTransfer, NewCookie)

Description

OnCopyInstance is called when a new instance of the user defined checker is copied, and inserted into the
sequence list.

Parameters

 ObjectToTransfer (input_object) object(-array)→ object

The transfer object of the checker instance. It is a copy of the transfer object of the checker instance the

current checker instance is a copy of.

 NewObjectToTransfer (output_object) object(-array) → object

The new transfer object of the checker instance. If ObjectToTransfer is updated by the checker instance the

result of the update has to be returned in New ObjectToTransfer.

 Cookie (input_control) integer → (integer)

Cookie which may help to identify a user defined checker instance. The cookie may especially be useful if the

script manages different information for each instance.

 CookieSource (input_control) integer → (integer)

Cookie of the checker that was copied. The cookie may especially be useful if the script manages different

information for each instance. It may be necessary to copy information from the source checker.

 TupleToTransfer (input_control) any → (integer / real / string)

The transfer tuple of the checker instance. It is a copy of the transfer tuple of the checker instance the
current checker instance is a copy of.

 NewCookie (output_control) integer → (integer)

If set, this new Cookie value will be assigned to this checker instance.

 New TupleToTransfer (output_control) any → (integer / real / string)

The new transfer tuple of the checker instance. If TupleToTransfer is updated by the checker instance the

result of the update has to be returned in NewTupleToTransfer.

Q.VITEC Q.HI - HDevelop Script Interface

34

2.14 OnDeleteInstance

Name

OnDeleteInstance — called when a checker instance is deleted.

Synopsis

OnDeleteInstance(: : Cookie)

Description

OnDeleteInstance is called when an instance of the user defined checker is deleted.

Parameters

 Cookie (input_control) integer → (integer)

Cookie which may help to identify a user defined checker instance. The cookie may especially be useful if

the script manages different information for each instance.

Q.VITEC Q.HI - HDevelop Script Interface

35

2.15 OnExecuteInstance

Name

OnExecuteInstance — called when a checker instance is executed.

Synopsis

OnExecuteInstance(Image, Shape, GrayResults, BinaryResults, ObjectToTransfer : NewImage,
ObjectsWithResults, ObjectsToDraw, ImageToDraw, ContoursToDraw, NewObjectToTransfer : Cookie,

ParameterValues, UsedResultValues, ImageSource, AdjustedShape, TupleToTransfer : DetectedObjects,

Results, ErrorMessage, EmptyContourValue, NewParameterValues, NewTupleToTransfer,
ExecuteInstanceResult, ColorsForObjectsWithResults, ColorsForObjectsToDraw, ObjectsDrawMode)

Description

OnExecuteInstance is called when an instance of the user defined checker is executed.

Parameters

 Image (input_object) image → object

The current image. If the checker does not use gray or binary image filters, the domain of the image is the

full image. If it does use gray or binary image filters, the domain of the image is reduced to the current

shape.

 Shape (input_object) region → object

The current shape. This means if the checker uses a position/rotation adjustment, the shape is adjusted

according to this position/rotation adjustment.

 GrayResults (input_object) image → object

Contains the results of this gray image filtering. The results are only calculated in the checker's current

shape. If grey image filters are not used, this image will be empty. The pixels outside the shape of the

checker are black.

 BinaryResults (input_object) region(-array) → object

Contains the objects created by the thresholding and/or the binary image filters. If thresholding or binary

image filters are not used, this region array will be empty.

 UsedResultObjects (input_object) object(-array)→ object

If the procedure GetUsedResultDescriptions has defined some Used Results, the objects from which the

results are calculated will be provided here. Otherwise the object (-array) will be empty. (See parameter

UsedResultValues, too.)

The index of an object in UsedResultObjects is the same as the index of the result value in

UsedResultValues. That means that for every result UsedResultObjects contains to objects: an empty object

at the position of the result type in UsedResultValues, which has to be ignored, and the object, from which

the result is calculated, at the position of the result value in UsedResultValues.

 ObjectToTransfer (input_object) object(-array)→ object

The transfer object of the checker instance.

 NewImage (output_object) image → object

A new image. Note: this will be the new image for the whole application, and not just the checker instance.

The new image must be the same size as the original image.

 ObjectsWithResults (output_object) region → object

The objects for which results are calculated. If the checker does not calculate objects, but only returns

results, you have to insert so many empty objects that the condition described under Results is fulfilled, that

Q.VITEC Q.HI - HDevelop Script Interface

36

means that for each set of results one empty object has to be inserted.

 ObjectsToDraw (output_object) region → object

Additional objects to be drawn with the ObjectsWithResults are placed in this region array. Corresponding

objects in the arrays ObjectsWithResults and ObjectsToDraw share the same array position.

How this array is treated depends on the setting of the parameter ObjectsDrawMode:

 ImageToDraw (output_object) image → object

If the domain of ImageToDraw is not empty after the call of OnExecuteInstance, the image returned in

ImageToDraw is used as processing value results of the execution. The domain of the returned image is not

checked. That means if the domain of the returned image is not equal to the domain given by Shape, the
returned image parts outside the shape are drawn, too.

If ImageToDraw is derived either from Image or NewImage, it needs to refer to a different HALCON image

object to that of Image or NewImage. It will be ignored if it refers to the same HALCON image object.
ImageToDraw will refer to the same HALCON image object if it is created with the HALCON operator

copy_obj. Therefore, to ensure that it refers to a different HALCON image object, use the operator

copy_image. (For details, see the HALCON documentation regarding operators copy_obj and copy_image).

NOTE: In order to see the ImageToDraw, the grey image processing results visibility must be turned ON.

See this setting on the Visibility page of the checker properties dialog.

 ContoursToDraw (output_object) xld_cont(-array) → object

A XLD contour array that contains the contours that should be drawn.

Contours to be drawn with the ObjectsWithResults are placed in this XLD contour array. Corresponding

objects in the arrays ObjectsWithResults and ContoursToDraw share the same array position.

How this array is treated depends on whether ObjectsWithResults is empty or not:

ObjectsWithResults contains objects:

This array can contain any number of objects, but the maximum number of objects drawn is the number of

objects in the array ObjectsWithResults.

ObjectsWithResults is empty:

All objects in ContoursToDraw will be drawn. This is useful for checkers that have an OK state with no
results, for example a checker that calculates differences.

 NewObjectToTransfer (output_object) object(-array) → object

The new transfer object of the checker instance. If ObjectToTransfer is updated by the checker instance the

result of the update has to be returned in New ObjectToTransfer.

 Cookie (input_control) integer → (integer)

Cookie which may help to identify a user defined checker instance. The cookie may especially be useful if the

script manages different information for each instance.

 ParameterValues (input_control) any → (integer / real /

string)

If parameters have been defined by the procedure GetParameterDescriptions, the current values will be

provided here, in the same order that they were defined. Otherwise the parameter will be empty.

 UsedResultValues (input_control) any → (integer / real /

string)

If the procedure GetUsedResultDescriptions has defined some Used Results, their values will be provided
here. Otherwise the parameter will be empty.

There are two entries for each result, the first entry identifying the type of the second entry. The possible

identifiers and their meaning is as follows.

Identifier and Value

of first entry.
Meaning of second entry.

DATA_INVALID = 0 The result value is given, but its value could not be calculated.

Q.VITEC Q.HI - HDevelop Script Interface

37

DATA_EMPTY = 1 The result value is an empty string (for string type results) or 0.0 (for real

type results), or for a “Group” the value is the number of entries.

DATA_DOUBLE = 3 The result value is a double value.

DATA_STRING = 7 The result value is a string value.

 ImageSource (input_control) any → (integer)

Indicates the selected image source. The possible identifiers and their meaning are as follows.

Value Meaning.

IMAGE_GRAY = 0 The checker does not use an image source. This is especially true if

the checker works on a gray value image.

IMAGE_COLOR = 1 Currently selected image source is the color image.

IMAGE_RED_CH = 258 (0x102) Currently selected image source is the red channel of the color

image.

IMAGE_GREEN_CH = 514 (0x202) Currently selected image source is the green channel of the color

image.

IMAGE_BLUE_CH = 770 (0x302) Currently selected image source is the blue channel of the color

image.

IMAGE_HUE_CH = 1026 (0x402) Currently selected image source is the hls hue channel of the color

image.

IMAGE_LUM_CH = 1282 (0x502) Currently selected image source is the hls luminance channel of the

color image.

IMAGE_SAT_CH = 1538 (0x602) Currently selected image source is the hls saturation channel of the

color image.

IMAGE_HSV_HUE_CH = 1794

(0x702)
Currently selected image source is the hsv hue channel of the color

image.

IMAGE_HSV_SAT_CH = 2050

(0x802)
Currently selected image source is the hsv saturation channel of the

color image.

IMAGE_HSV_VAL_CH = 2306

(0x902)
Currently selected image source is the hsv value channel of the

color image.

IMAGE_COM_RGB_CH = 2562

(0xA02)
Currently selected image source is a gray value combination of the

three rgb channels of the color image.

 AdjustedShape (input_control) any → (integer / real)

Information about the current state of the checker’s shape. They contain the shape type, the current values

of the position rotation adjusted of the checker, and the not adjusted shape information as shown in the
checker’s shape property page. For details see Adjusted Shape Information.

 TupleToTransfer (input_control) any → (integer / real /

string)

The transfer tuple of the checker instance.

 DetectedObjects (output_control) any → (integer)

Number of detected objects. This number needs to be bigger than or equal to the number of objects, for

which the Results are calculated.

 Results (output_control) any → (integer / real /

string)

For each detected object there is a set of results. The set is defined by the GetResultDescriptions procedure.

Example: If GetResultsDescriptions defines 5 result values (see example in GetResultsDescriptions above)

and the number of result objects is 4, then the output tuple Results must contain 4 x 5 = 20 entries.

The tuple array first contains the five ‘X’ Coordinate results, followed by the five ‘Y’ Coordinate results, and

so on for the other results.

The results would then be displayed in the Results tab of the checkers’ property page. e.g.

Q.VITEC Q.HI - HDevelop Script Interface

38

 ErrorMessage (output_control) string → (string)

A message that is displayed when ExecuteInstanceResult is not 0

 EmptyContourValue (output_control) any → (integer/real)

A Control output variable that can be set to the value that an empty contour is specified as. The default is

the point -1,-1. If the point -1,-1 happens to be a valid contour in the set of ContoursToDraw, you can

define a different value here.

 NewParameterValues (output_control) any → (integer / real /

string)

An output tuple that describes new values for parameters described by the procedure

GetParameterDescriptions. This is particularly useful when hidden parameters are used, and the script needs

to change the values.

Each new parameter value is described by three tuple entries as follows:

Entry No. Type Description

0 string Name of group to which the

parameter belongs.

1 string Name of parameter.

2 integer/real/string (according to how the parameter

was defined in GetParameterDescriptions)
New value of parameter.

 NewTupleToTransfer (output_control) any → (integer / real /

string)

The new transfer tuple of the checker instance. If TupleToTransfer is updated by the checker instance the

result of the update has to be returned in NewTupleToTransfer.

 ExecuteInstanceResult (output_control) integer → (integer)

Result of the OnExecuteInstance procedure.

Possible values are:

0 => The execution of the user defined checker instance was OK. (Default)

1 => The execution of the user defined checker instance produced a warning.

2 => The execution of the user defined checker instance produced an error.

 ColorsForObjectsWithResults (output_control) integer → (integer)

In this tuple the color, which is used in the Vision Q.400 camera window, for every object with results may

be returned: the first color in the tuple is assigned to the first object with results, the second to the second,
and so on. If the tuple contains less colors than found objects with results, the colors are used “turn

around”. If it contains more colors, the unnecessary colors are ignored.

If the tuple is not returned, for all objects the color set in Vision Q.400 is used. The same is true if the empty

tuple is returned.

 ColorsForObjectsToDraw (output_control) integer → (integer)

In this tuple the color, which is used in the Vision Q.400 camera window, for every object to draw may be

returned: the first color in the tuple is assigned to the first object with results, the second to the second, and
so on. If the tuple contains less colors than found objects with results, the colors are used “turn around”. If

it contains more colors, the unnecessary colors are ignored.

If the tuple is not returned, for all objects the color set in Vision Q.400 is used. The same is true if the empty

Q.VITEC Q.HI - HDevelop Script Interface

39

tuple is returned.

 ObjectsDrawMode (output_control) integer → (integer)

In this tuple the drawing mode is adjusted:

Possible values are:

0 => The display of the ObjectsToDraw is related to the content of the Objects with results

ObjectsWithResults contains objects:

This array can contain any number of objects, but the maximum number of objects drawn is the number of

objects in the array ObjectsWithResults.

ObjectsWithResults is empty:

All objects in ObjectsToDraw will be drawn. This is useful for checkers that have an OK state with no results,

for example a checker that calculates differences.

1 => The display of the ObjectsToDraw is done totally independent

The ObjectsToDraw array can contain any number of objects. All objects are drawn in the dedicated color.

If the tuple is not returned, the ObjectsDrawMode is set to ‘0’. The same is done if the empty tuple is

returned.

2.15.1 Adjusted Shape Information

2.15.1.1 Rectangle, Rectangle->

Exampl

e
AdjustedShape = [16, 0, 0, 0.0, 163, 295, 145, 246, 182, 345, 270.0]

Length |AdjustedShape| = 11

Values AdjustedShape[0] = Shape type 0,

16
long 0 for rectangle

16 for rectangle ->

AdjustedShape[1] = Pos. Rot. Adj. Delta X double

AdjustedShape[2] = Delta Y double

AdjustedShape[3] = Delta Angle double

AdjustedShape[4] = Center Point X long

AdjustedShape[5] = Y long

AdjustedShape[6] = Start Point X long

AdjustedShape[7] = Y long

AdjustedShape[8] = End Point X long

AdjustedShape[9] = Y long

AdjustedShape[10] = Direction Angle Angle double

2.15.1.2 Ellipse, Circle

Example AdjustedShape = [1, 0, 0, 0.0, 340, 291, 201, 193, 479, 389]

Length |AdjustedShape| = 10

Values AdjustedShape[0] = Shape type 1,

131073
long 1 for ellipse,

131073 for circle

Q.VITEC Q.HI - HDevelop Script Interface

40

AdjustedShape[1] = Pos. Rot. Adj. Delta X double

AdjustedShape[2] = Delta Y double

AdjustedShape[3] = Delta Angle double

AdjustedShape[4] = Center Point X long

AdjustedShape[5] = Y long

AdjustedShape[6] = Top Left Point X long

AdjustedShape[7] = Y long

AdjustedShape[8] = Bottom Right

Point
X long

AdjustedShape[9] = Y long

2.15.1.3 Ellipse->, Circle->

Example AdjustedShape = [17, 14, -68, -21.48, 294, 176, 222, 104, 366, 248, 360, 148, 245,

229, 0]

Length |AdjustedShape| = 15

Values AdjustedShape[0] = Shape type 17,
131089

long 17 for ellipse ->,
131089 for circle->

AdjustedShape[1] = Pos. Rot. Adj. Delta X double

AdjustedShape[2] = Delta Y double

AdjustedShape[3] = Delta Angle double

AdjustedShape[4] = Center Point X long

AdjustedShape[5] = Y long

AdjustedShape[6] = Top Left Point X long

AdjustedShape[7] = Y long

AdjustedShape[8] = Bottom Right

Point
X long

AdjustedShape[9] = Y long

AdjustedShape[10] = Start Point X long

AdjustedShape[11] = Y long

AdjustedShape[12] = End Point X long

AdjustedShape[13] = Y long

AdjustedShape[14] = Scanning

Direction
0 long always 0,

use start and end point

2.15.1.4 Doughnut

Example AdjustedShape = [7, 0, 0, 0.0, 154, 239, 52, 137, 107, 192, 256, 235, 116, 144]

Length |AdjustedShape| = 14

Values AdjustedShape[0] = Shape type 7 long 7 for doughnut

Q.VITEC Q.HI - HDevelop Script Interface

41

AdjustedShape[1] = Pos. Rot. Adj. Delta X double

AdjustedShape[2] = Delta Y double

AdjustedShape[3] = Delta Angle double

AdjustedShape[4] = Center Point X long

AdjustedShape[5] = Y long

AdjustedShape[6] = Outer circle

edge point
X long

AdjustedShape[7] = Y long

AdjustedShape[8] = Inner circle

edge point
X long

AdjustedShape[9] = Y long

AdjustedShape[10] = Start Point X long

AdjustedShape[11] = Y long

AdjustedShape[12] = End Point X long

AdjustedShape[13] = Y long

2.15.1.5 Doughnut->

Exampl

e
AdjustedShape = [19, 0, 0, 0.0, 81, 160, 44, 123, 58, 137, 49, 142, 45, 167, 1]

Length |AdjustedShape| = 15

Values AdjustedShape[0] = Shape type 19 long 19 for doughnut ->

AdjustedShape[1] = Pos. Rot. Adj. Delta X double

AdjustedShape[2] = Delta Y double

AdjustedShape[3] = Delta Angle double

AdjustedShape[4] = Center Point X long

AdjustedShape[5] = Y long

AdjustedShape[6] = Outer circle

edge point
X long

AdjustedShape[7] = Y long

AdjustedShape[8] = Inner circle
edge point

X long

AdjustedShape[9] = Y long

AdjustedShape[10] = Start Point X long

AdjustedShape[11] = Y long

AdjustedShape[12] = End Point X long

AdjustedShape[13] = Y long

AdjustedShape[14] = Scanning
Direction

0, 1 long 0 = clockwise,
1 = counterclockwise

2.15.1.6 Line->

Exampl

e
AdjustedShape = [18, 0, 0, 0.0, 217, 275, 95, 348, 340, 203, 30.6186]

Length |AdjustedShape| = 11

Q.VITEC Q.HI - HDevelop Script Interface

42

Values AdjustedShape[0] = Shape type 18,

65554,
131090

long 18 for line->,

65554 for horizontal line-
>,

131090 for vertical line->

AdjustedShape[1] = Pos. Rot. Adj. Delta X double

AdjustedShape[2] = Delta Y double

AdjustedShape[3] = Delta Angle double

AdjustedShape[4] = Center Point X long

AdjustedShape[5] = Y long

AdjustedShape[6] = Start Point X long

AdjustedShape[7] = Y long

AdjustedShape[8] = End Point X long

AdjustedShape[9] = Y long

AdjustedShape[10] = Angle double

2.15.1.7 Polygon

Exampl

e
AdjustedShape = [3, 0, 0, 0.0, 286, 202, 192, 225, 243, 140, 362, 146, 380, 191, 297,

265]

Length |AdjustedShape| = 6 + 2 * no of polygon points

Values AdjustedShape[0] = Shape type 3 long 3 for polygon

AdjustedShape[1] = Pos. Rot. Adj. Delta X double

AdjustedShape[2] = Delta Y double

AdjustedShape[3] = Delta Angle double

AdjustedShape[4] = Center Point X long

AdjustedShape[5] = Y long

AdjustedShape[6] = 1st Point X long

AdjustedShape[7] = Y long

..

AdjustedShape[2n+4] = n-th Point X long

AdjustedShape[2n+5] = Y long

2.15.1.8 Dynamic Object Shape

Exampl

e
AdjustedShape = [10]

Length |AdjustedShape| = 1

Value |AdjustedShape| = Shape type 3 long 10 for dynamic object

shape

2.15.1.9 Static Object Shape

Q.VITEC Q.HI - HDevelop Script Interface

43

Exampl

e
AdjustedShape = [65546, 0, 0, 0.0]

Length |AdjustedShape| = 4

Values AdjustedShape[0] = Shape type 65546 long 65546 for static object

shape

AdjustedShape[1] = Pos. Rot. Adj. Delta X double

AdjustedShape[2] = Delta Y double

AdjustedShape[3] = Delta Angle double

2.15.1.10 No Shape

Example AdjustedShape =

Length |AdjustedShape| = 0

Q.VITEC Q.HI - HDevelop Script Interface

44

2.16 OnButtonPressed

Name

OnButtonPressed — called when the button on the Parameters or Used Results page is pressed.

Synopsis

OnButtonPressed(Image, Shape, GrayResults, BinaryResults, ObjectToTransfer : NewImage,
ObjectsToDraw, ImageToDraw, ContoursToDraw, NewObjectToGransfer : Cookie, ParameterButtonPressed,

InstanceInfoParameters, ParameterValues, InstanceInfoUsedResults, UsedResultValues, ImageSource,

AdjustedShape, TupleToTransfer : EmptyContourValue, NewParameterValues, NewTupleToTransfer,
ButtonPressedResult)

Description

OnButtonPressed is called whenever the button on the Parameters or Used Results page is clicked.

Parameters

 Image (input_object) image → object

The current image. If the checker does not use gray or binary image filters, the domain of the image is the

full image. If it does use gray or binary image filters, the domain of the image is reduced to the current

shape.

 Shape (input_object) region → object

The current shape. This means if the checker uses a position/rotation adjustment, the shape is adjusted

according to this position/rotation adjustment.

 GrayResults (input_object) image → object

Contains the results of this gray image filtering. The results are only calculated in the checker's current

shape. If grey image filters are not used, this image will be empty. The pixels outside the shape of the
checker are black.

 BinaryResults (input_object) region(-array) → object

Contains the objects created by the thresholding and/or the binary image filters.

 UsedResultObjects (input_object) object(-array)→ object

If the procedure GetUsedResultDescriptions has defined some Used Results, the objects from which the

results are calculated will be provided here. Otherwise the object (-array) will be empty. (See parameter

UsedResultValues, too.)

The index of an object in UsedResultObjects is the same as the index of the result value in

UsedResultValues. That means that for every result UsedResultObjects contains to objects: an empty

object at the position of the result type in UsedResultValues, which has to be ignored, and the object,

from which the result is calculated, at the position of the result value in UsedResultValues.

 ObjectToTransfer (input_object) object(-array)→ object

The transfer object of the checker instance.

 NewImage (output_object) image → object

A new image. Note: this will be the new image for the whole application, and not just the checker instance.

The new image must be the same size as the original image.

 ObjectsToDraw (output_object) region(-array) → object

Objects that are drawn if the ButtonPressedResult value is set to 2.

 ImageToDraw (output_object) image → object

Image that is drawn if the ButtonPressedResult value is set to 2.

The domain of image is not checked. That means if the domain of the image extends beyond the domain of

the Shape, the image outside the shape is also drawn.

Q.VITEC Q.HI - HDevelop Script Interface

45

If ImageToDraw is derived either from Image or NewImage, it needs to refer to a different HALCON image

object to that of Image or NewImage. It will be ignored if it refers to the same HALCON image object.
ImageToDraw will refer to the same HALCON image object if it is created with the HALCON operator

copy_obj. Therefore, to ensure that it refers to a different HALCON image object, use the operator
copy_image. (For details, see the HALCON documentation regarding operators copy_obj and copy_image).

 ContoursToDraw (output_object) xld_cont(-array) → object

A XLD contour array that contains the contours that should be drawn if the ButtonPressedResult value is set

to 2.

If contours in ContoursToDraw are drawn, the objects in ObjectsToDraw are not drawn.

 NewObjectToTransfer (output_object) object(-array) → object

The new transfer object of the checker instance. If ObjectToTransfer is updated by the checker instance

the result of the update has to be returned in New ObjectToTransfer.

 Cookie (input_control) integer → (integer)

Cookie which may help to identify a user defined checker instance. The cookie may especially be useful if the

script manages different information for each instance.

 ParameterButtonPressed (input_control) integer → (integer)

Informs which button has been pressed (See Description)

1 => Execute Parameters

0 => Execute Used Results

 InstanceInfoParameters (input_control) any → (integer)

Informs about the selected parameter group and the selected parameter when OnButtonPressed is called. It

can be used to implement a step by step testing of the selected parameter values.

This is a pair of tuples, the first being the index of the currently selected group (-1 if no group is selected)

and the second being the index of the currently selected instance in the group (-1 if no instance is selected).

 ParameterValues (input_control) any → (integer / real / string)

If parameters have been defined by the procedure GetParameterDescriptions, the current values will be
provided here, in the same order that they were defined. Otherwise the parameter will be empty.

 InstanceInfoUsedResults (input_control) any → (integer)

Informs about the selected used results group and the selected used result when OnButtonPressed is called.

It can be used to implement a step by step testing of the selected parameter values.

This is a pair of tuples, the first being the index of the currently selected group (-1 if no group is selected)

and the second being the index of the currently selected instance in the group (-1 if no instance is selected).

The tuple is empty if the “Used Results” are not used, or if the ParameterButtonPressed is 1 (Execute

Parameters).

 UsedResultValues (input_control) any → (integer / real / string)

If parameters have been defined by the procedure GetUsedResultDescriptions, the current Used Result

values will be provided here, in the same order that they were defined. Otherwise the parameter will be

empty.

 ImageSource (input_control) any → (integer)

Indicates the selected image source. The possible identifiers and their meaning are as follows.

Value Meaning.

IMAGE_GRAY = 0 The checker does not use an image source. This is especially true if the
checker works on a gray value image.

IMAGE_COLOR = 1 Currently selected image source is the color image.

IMAGE_RED_CH = 258

(0x102)
Currently selected image source is the red channel of the color image.

IMAGE_GREEN_CH = 514

(0x202)
Currently selected image source is the green channel of the color image.

IMAGE_BLUE_CH = 770

(0x302)
Currently selected image source is the blue channel of the color image.

IMAGE_HUE_CH = 1026
(0x402)

Currently selected image source is the hls hue channel of the color
image.

IMAGE_LUM_CH = 1282

(0x502)
Currently selected image source is the hls luminance channel of the

color image.

Q.VITEC Q.HI - HDevelop Script Interface

46

IMAGE_SAT_CH = 1538

(0x602)
Currently selected image source is the hls saturation channel of the color

image.

IMAGE_HSV_HUE_CH = 1794

(0x702)
Currently selected image source is the hsv hue channel of the color

image.

IMAGE_HSV_SAT_CH = 2050

(0x802)
Currently selected image source is the hsv saturation channel of the

color image.

IMAGE_HSV_VAL_CH = 2306

(0x902)
Currently selected image source is the hsv value channel of the color

image.

IMAGE_COM_RGB_CH = 2562

(0xA02)
Currently selected image source is a gray value combination of the three

rgb channels of the color image.

 AdjustedShape(input_control) any → (integer / real)

Information of the current state of the checker’s shape. They contain the shape type, the current values of

the position rotation adjusted of the checker, and the not adjusted shape information as shown in the
checker’s shape property page. For details see Adjusted Shape Information.

 TupleToTransfer (input_control) any → (integer / real /

string)

The transfer tuple of the checker instance.

 EmptyContourValue (output_control) any → (integer/real)

A Control output variable that can be set to the value that an empty contour is specified as. The default is

the point -1,-1. If the point -1,-1 happens to be a valid contour in the set of ContoursToDraw, you can define

a different value here.

 NewParameterValues (output_control) any → (integer / real / string)

An output tuple that describes new values for parameters described by the procedure

GetParameterDescriptions. This is particularly useful when hidden parameters are used, and the script needs
to change the values.

Each new parameter value is described by three tuple entries as follows:

Entry No. Type Description

0 string Name of group to which the

parameter belongs.

1 string Name of parameter.

2 integer/real/string (according to how the parameter

was defined in GetParameterDescriptions)
New value of parameter.

 NewTupleToTransfer (output_control) any → (integer / real /

string)

The new transfer tuple of the checker instance. If TupleToTransfer is updated by the checker instance the

result of the update has to be returned in NewTupleToTransfer.

 ButtonPressedResult (output_control) integer → (integer)

Result of the OnButtonPressed procedure. Possible values are:

0 => Draw nothing.

1 => Draw grey image filtering results along with ObjectsToDraw

2 => Draw the image in ImageToDraw and the objects in ObjectsToDraw if they are given.

Q.VITEC Q.HI - HDevelop Script Interface

47

3 Debugging Support

One big advantage of scripting is the ability to leverage the power of the HDevelop editor and debugger. In

order to easily debug scripts written for Vision Q.400, there are external procedures provided. These will
write debug data (image, parameter values, region information) during execution within Vision Q.400 to

hard disk, and then read the data when executing within HDevelop.

This ensures that you can run and debug a script in HDevelop with exactly the same data as provided by

Vision Q.400.

For comfortable handling we recommend implementing a script parameter to enable and disable this feature

from within Vision Q.400 (see screenshot below).

Debug Procedures

This group of procedures enhances the debugging possibilities of scripts running within Vision Q.400. The

procedures are external to the checker script and can be found in the sub-folder .\User Defined
Checkers\HDevelop\External Procedures of the Vision Q.400 installation folder.

Procedure name Description

Test_InHDevelop Check if the script is running within Vision Q.400 or within HDevelop.

ReadDebugData_OnExecuteInstance Read the debug data when run by HDevelop from the folder

C:\Debug

WriteDebugData_OnExecuteInstance Write the debug data when run by Vision Q.400 into the folder

C:\Debug

To use the debug procedures you need to add the following lines of code in the procedure

OnExecuteInstance before the parameter values are read.

To control debug output, just comment in or out WriteDebugData_OnExecuteInstance.

**
*** For Debugging
**
try
* We determine if the script is running in HDevelop
TEST_InHDevelop (bInHDevelop)

if (bInHDevelop)
* Running in HDevelop, Read the debug information
ReadDebugData_OnExecuteInstance (Image, Shape, GrayResults, BinaryResults, Cookie, ParameterValues, UsedResultValues)
else
* Running in Vision Q.400, Write the debug information.
WriteDebugData_OnExecuteInstance (Image, Shape, GrayResults, BinaryResults, Cookie, ParameterValues, UsedResultValues)
endif

catch(E)
ExecuteInstanceResult := 2
ErrorMessage := 'Reading or Writing Debug Information failed'
throw(E)
endtry

Alternatively, it is possible to use a checker parameter to control the debug output.

Note that this is a parameter setting for a particular checker instance in Vision Q.400, and not for all

instances.

Q.VITEC Q.HI - HDevelop Script Interface

48

For example, the following code in GetParameterDescriptions defines a debug parameter.

* Define a debug parameter. Default value is ‘false’ => off.
ParameterDescriptions := [ParameterDescriptions, 'Group', 'Debug@A@Par_Debug', '']
ParameterDescriptions := [ParameterDescriptions, 'Bool', 'Enable Debug Output@A@Par_DebugOutput', 'false','Create debug

information.']

In OnExecuteInstance, the parameter can be read and used to conditionally execute the writing of debug

information (in this example the parameter is located at index 18, but this will

* Read the parameter that determines whether debug information should be written.
Par_DebugOutput := ParameterValues[18]

* If the debug parameter is true, and we are NOT in HDevelop (i.e. in Vision Q.400), write the debug information
if (Par_DebugOutput = 'true' and bInHDevelop = 0)
WriteDebugData_OnExecuteInstance (Image, Shape, GrayResults, BinaryResults,Cookie, ParameterValues, UsedResultValues)
Endif

Q.VITEC Q.HI - HDevelop Script Interface

49

4 Script Helpers

The Vision Q.400 installation contains some HDevelop procedures you can use to facilitate the programming

of your script.

Available Procedures

This group of procedures facilitates the programming of your script in different aspects related to the

provided procedure. The procedures are external to the checker script and can be found in the sub-
folder .\User Defined Checkers\HDevelop\External Procedures of the Vision Q.400 installation folder.

Procedure name Description

Convert_RGB_COLORREF Convert a tuple containing an RGB color value into a tuple containing a

COLORREF value used in Windows.

This is helpful to covert the color values used for drawing with Halcon inside the
script into color values you can provide as parameter for displaying the

ObjectsWithResults and the ObjectsToDraw in different colors.

Convert_RGB_COLORREF(: : ColorRGB : ColorCOLORREF)

Parameter
ColorRGB (input_control)

Tuple containg the color as RGB value in
the format: [R,G,B]

any → (tuple)

ColorCOLORREF (output_control)

Tuple containing the color in the
COLORREF format used in Windows.

any → (tuple)

Q.VITEC Q.HI - HDevelop Script Interface

50

5 Global Script Variables

Scripts can contain global variables. It should be noted however that these variables are global across all

scripts used by Vision Q.400. This means that the variables come into existence when the scripts are loaded
(when Vision Q.400 is started), and persist as long as Vision Q.400 is running. Therefore, if two scripts use a

global variable of the same name, it could cause unexpected results. On the other hand, it may be very
useful to be able to modify a single variable from multiple scripts.

If a script is developed for general distribution, it is not possible to know the global variable names used by

other scripts. By pre or post pending the variable names with an identifier, like the checker’s short name, a
clash can be minimized.

	Vision Q.400
	Table of Contents
	1 Introduction
	2 HDevelop Procedures
	2.1 OnLoad
	2.2 GetInfo
	2.3 GetDescription
	2.4 GetParameterDescriptions
	2.5 GetResultDescriptions
	2.6 GetUsedResultDescriptions
	2.7 OnOpenApplication
	2.8 OnSaveApplication
	2.9 OnCloseApplication
	2.10 OnLoadInstance
	2.11 OnSaveInstance
	2.12 OnCreateInstance
	2.13 OnCopyInstance
	2.14 OnDeleteInstance
	2.15 OnExecuteInstance
	2.15.1 Adjusted Shape Information
	2.15.1.1 Rectangle, Rectangle->
	2.15.1.2 Ellipse, Circle
	2.15.1.3 Ellipse->, Circle->
	2.15.1.4 Doughnut
	2.15.1.5 Doughnut->
	2.15.1.6 Line->
	2.15.1.7 Polygon
	2.15.1.8 Dynamic Object Shape
	2.15.1.9 Static Object Shape
	2.15.1.10 No Shape

	2.16 OnButtonPressed

	3 Debugging Support
	4 Script Helpers
	5 Global Script Variables

