
Vision Q.400
Image Processing

Version 7.1.0.0 ActiveX Controls

Q.VITEC GmbH
Hagenburger Str. 54, 31515 Wunstorf, Germany

Tel.:+49(0)5031-949 43 20  Fax: +49(0)5031-949 43 29
Internet: www.qvitec.de

 Date: 2014-07-22

http://www.qvitec.de/

Q.VITEC ActiveX Controls

2

Table of Contents

Vision Q.400... 1

Table of Contents ... 2

1 Functionality: ActiveX Control VisionQ400Control ... 6

1.1 Naming Convention ... 7

1.2 A Note on Visual Studio ... 8

2 Methods of the ActiveX Control VisionQ400Control .. 9

2.1 General Methods ... 10

2.1.1 connectToServer(sleepTime) .. 10
2.1.2 disconnectFromServer(saveSettingsSetupMode) .. 10
2.1.3 exitServer() ... 11
2.1.4 getState() .. 12
2.1.5 getProperty(name, parameter) .. 13

2.1.5.1 Accessing the Parallel I/O Channnels ... 20
2.1.5.2 User Rights Management ... 24

2.1.6 setProperty(name, parameter, values) .. 25
2.1.6.1 Accessing the Parallel I/O Output Data Channnels .. 28
2.1.6.2 User Rights Management ... 30

2.1.7 interruptStartSignals(inhibit) .. 31
2.1.8 showServer(show) .. 32
2.1.9 startRunMode() .. 32
2.1.10 stopRunMode()... 33

2.2 Application Methods ... 34

2.2.1 changeApplication(appNumber) .. 34
2.2.2 changeApplicationByName(applicationName)... 35
2.2.3 getApplicationProperty(property) .. 36
2.2.4 getDependentFileNames(navFileName, resultValue) .. 37
2.2.5 openApplication(applicationName, saveLastOpen) ... 38
2.2.6 saveApplicationAs(fileName) ... 39
2.2.7 startApplication(groupNumber, lockGrab) ... 40
2.2.8 stopAutoRestart() ... 41
2.2.9 setUserData(userDataName, userData) ... 41
2.2.10 getUserData(userDataName, userData) ... 42

2.3 Spreadsheet Methods ... 43

Q.VITEC ActiveX Controls

3

2.3.1 changeResultName(oldName, newName) ... 43
2.3.2 getDataCount() ... 43
2.3.3 getDataColoumnName(entryAt) .. 44
2.3.4 getDataResultName(entryAt) ... 44
2.3.5 getSpreadsheetColumnNames() .. 45
2.3.6 getSpreadsheetData (rowName, colName, dataType, data).. 46
2.3.7 resetSpreadSheetStatistics() .. 47
2.3.8 setCalibrationValue(attribName, valToSet) .. 47
2.3.9 setOcxReference(attribName, newRef) ... 48
2.3.10 setSpreadSheetLimit(attribName, valToSet, upper) .. 49

2.4 Image Methods .. 50

2.4.1 getImageSize(cameraNumber, numberOfCols, numberOfRows) .. 50
2.4.2 setSendImage(cameraNumber) ... 50
2.4.3 setSendImagePart(cameraNumber, startPointX, startPointY, width, height) .. 51
2.4.4 setZoomImageScale(cameraNumber, scaleX, scaleY, interpolaition) .. 52
2.4.5 setZoomImageSize(cameraNumber, width, height, interpolaition) ... 53
2.4.6 getImage(cameraNumber) ... 54
2.4.7 removeSendImage(cameraNumber) .. 55
2.4.8 loadCameraImage(cameraNumber, fileName) .. 55
2.4.9 saveCameraImage(cameraNumber, fileName) .. 56

2.5 Error Handling Methods .. 57

2.5.1 getLastErrorNumber() .. 57
2.5.2 getLastErrorText() ... 57

2.6 getParameter(checkerName, parameterName) ... 59

2.6.1 Checker ... 60
2.6.1.1 Common Parameters ... 60

2.6.1.1.1 Thresholding ... 60
2.6.1.1.2 Image Filters .. 61

2.6.1.2 Window Checker .. 61
2.6.1.3 Feature Extraction Checker .. 62
2.6.1.4 Binary Edge Detection Checker .. 62
2.6.1.5 Gray Edge Detection Checker .. 62
2.6.1.6 Difference Checker ... 63
2.6.1.7 Contour Matching .. 63
2.6.1.8 Correlation Matching ... 64
2.6.1.9 OCR Checker ... 65
2.6.1.10 Code Reader ... 66
2.6.1.11 Edge Detection Gray Value Projection ... 67
2.6.1.12 Identifier Checker ... 67

2.6.2 Shapes .. 68
2.6.2.1 Common Parameters ... 69
2.6.2.2 Shape Line -> .. 70
2.6.2.3 Shape Rectangle ... 71
2.6.2.4 Shape Rectangle -> ... 72
2.6.2.5 Shape Ellipse (Circle) .. 72
2.6.2.6 Shape Ellipse -> (Circle ->) .. 73
2.6.2.7 Shape Doughnut ... 73
2.6.2.8 Shape Doughnut -> ... 74
2.6.2.9 Shape Polygon .. 75
2.6.2.10 Object Shape .. 75

Q.VITEC ActiveX Controls

4

2.6.2.11 Additional Shapes ... 76
2.6.2.11.1 Template Shape .. 76

2.7 setParameter(checkerName, parameterName, parametervalues) .. 77

2.7.1 General Remarks .. 79
2.7.2 Checker ... 79

2.7.2.1 Common Parameters ... 79
2.7.2.1.1 Thresholding ... 79
2.7.2.1.2 Image Filters .. 80

2.7.2.2 Window Checker .. 80
2.7.2.3 Feature Extraction Checker .. 80
2.7.2.4 Binary Edge Detection Checker .. 81
2.7.2.5 Gray Edge Detection Checker .. 81
2.7.2.6 Difference Checker ... 81
2.7.2.7 Contour Matching .. 82
2.7.2.8 Correlation Matching ... 84
2.7.2.9 OCR Checker ... 85
2.7.2.10 Code Reader ... 85
2.7.2.11 Edge Detection Gray Value Projection ... 87
2.7.2.12 Identifier Checker ... 87
2.7.2.13 Position and Rotation Adjustment Checker ... 88

2.7.3 Shapes .. 88
2.7.3.1 Shape Line -> .. 89
2.7.3.2 Shape Rectangle ... 92
2.7.3.3 Shape Rectangle -> ... 93
2.7.3.4 Shape Ellipse (Circle) .. 93
2.7.3.5 Shape Ellipse -> (Circle ->) .. 94
2.7.3.6 Shape Doughnut ... 94
2.7.3.7 Shape Doughnut -> ... 96
2.7.3.8 Shape Polygon .. 98
2.7.3.9 Shape Object Shape ... 98
2.7.3.10 Additional Shapes ... 98

2.7.3.10.1 Template Shape .. 98

2.8 Shape Methods .. 100

2.8.1 getShapeAdjusted(CheckerName) ... 100

2.9 Getting Checker Results .. 102

2.9.1 getResult(checkerName, resultName) ... 103
2.9.2 getResultsObject(checkerName, objectNumber, colName, numberResults) 103
2.9.3 getResultsObjects(checkerName, colName, numberObjects, numberResultsObject) 105

3 Events of the ActiveX Control VisionQ400Control .. 106

3.1 SignalRecieved(signal) ... 108

3.2 DataNumber(numberOfBlocks) ... 110

3.3 DataInvalidRecieved(entryAt) ... 111

Q.VITEC ActiveX Controls

5

3.4 DataLongRecieved(dataLong, entryAt).. 112

3.5 DataDoubleRecieved(dataDouble, entryAt) .. 114

3.6 DataStringRecieved(dataString, entryAt) .. 115

3.7 DataBooleanRecieved(dataBoolean, entryAt) .. 116

3.8 DataExeGroupNumberRecieved(exeGroupNumber) .. 117

3.9 EndOfDataTransfer() .. 118

3.10 ImageAvaliable(cameraNumber, image) ... 119

3.11 ErrorOccurred(errorText) .. 121

4 Functionality: ActiveX Control VisionQ400Goodies Control 122

5 Methods of the ActiveX Control VisionQ400Goodies Control 123

5.1 savePixelValuesAsBitmap1(pixelValues, numberOfColumns, pixelType, fileName, comment) .. 124

5.2 savePixelValuesAsBitmap2(pixelValues, pixelType, fileName, comment) 125

5.3 getLastErrorText(): ... 126

5.4 getLastErrorNumber(): .. 127

Appendix A: VARIANT Type Conversion in Vision Q.400 129

Q.VITEC ActiveX Controls

6

1 Functionality: ActiveX Control VisionQ400Control

This documentation is an addition to the reference manual for Vision Q.400. For the details about Vision Q.400,
which are necessary to understand the functionality described here, please have a look into the reference manual
of Vision Q.400.

Vision Q.400 can be used as OLE-Automation server. For easier access to this COM-interface, the ActiveX Control
VisionQ400Control can be used. This ActiveX Control is automatically registered by the installation of Vision Q.400.

By default , COM places instances of the ActiveX Control VisionQ400Control in a so called “single-threaded
apartment”, so the object won't suffer concurrent thread accesses. That means that if your client uses more than one
thread, and you use only one instance of the ActiveX Control VisionQ400Control, only the thread in which the
instance is created can access it. All other threads must have their own instances of the control, or the have to post,
not send(!), messages to the thread, which owns the control if they want to access it. (A description of the COM
apartment model is found at

 http://www.codeguru.com/Cpp/COM-Tech/activex/apts/article.php/c5529/.)

Vision Q.400 is licensed by a dongle. This doingle can be used to license the ActiveX client, too. To check the license
the VisionQ400Control method getProperty() with the property name “CheckClientLicense” can be used.

To use Vision Q.400 as a server, the client, which uses the ActiveX Control, must be connected to Vision Q.400 by
calling the method connectToServer. All other methods return an error until connectToServer is called.

If Vision Q.400 was not started when a client calls connectToServer, Vision Q.400 is implicitly started by the call.

To disconnect a client, the method disconnectFromServer has to be called. If Vision Q.400 is implicitly started by a
client, and the client which calls disconnectFromServer, is the last connected client, Vision Q.400 is implicitly finished.

The method exitServer disconnects automatically from Vision Q.400 before Vision Q.400 is finished. If several clients
are connected to Vision Q.400, and one client calls exitServer, all other clients are disconnected from Vision Q.400,
too, and they receive the signal VISIONQ400_SIG_EXITING. The client which calls exitServer does not receive the signal
VISIONQ400_SIG_EXITING.

If Vision Q.400 is finished, but not by a call from an OLE client, all OLE clients are disconnected from Vision Q.400, and
they receive the signal VISIONQ400_SIG_EXITING.

The event ErrorOccurred is independent from the methods of VisionQ400Control and may occur at any time.
Therefore we recommend implementing it. Otherwise it can happen that Vision Q.400 does not work anymore, but
the client does not know this.

Please consider that your client has to be synchronised with the help of the signals Vision Q.400 sends. The event
SignalRecieved informs you about all signals Vision Q.400 sends to the ActiveX Control VisionQ400Control. Therefore
we recommend implementing it. Synchronisation may especially be necessary after starting or changing an
application.

If you do not synchronise your client, Vision Q.400 may not be ready for the next call of a method, and the methods of
VisionQ400Control may return an error code, e.g. the method startApplication may return VARIANT_FALSE.
Synchronization matters are described in the Vision Q.400 reference manual in the chapter “Interfaces ->
Introduction”.

http://www.codeguru.com/Cpp/COM-Tech/activex/apts/article.php/c5529/

Q.VITEC ActiveX Controls

7

1.1 Naming Convention
If in the following the terms TRUE, or FALSE (respectively true, or false) are used, the refer always to the
VARIANT_BOOL data type: TRUE (or true) mean always VARIANT_TRUE, FALSE (or false) mean always VARIANT_FALSE.

If the terms double, long, or short are used the data types DOUBLE, LONG, or SHORT are meant.

Q.VITEC ActiveX Controls

8

1.2 A Note on Visual Studio
Visual Studio, even Visual Studio 2012, is a 32 Bit executable.

(See http://stackoverflow.com/questions/13603854/visual-studio-2012-64-bit).

This means that if Vision Q.400 is installed on a 64 Bit system, Visual Studio will not find the ActiveX Control
VisionQ400Control, because this is 64 bit. To solve this the file VisionQ400Control_32.ocx is found in the installation
directory of Vision Q.400. If this file is registered, the 32 Bit version of the ActiveX Control VisionQ400Control is
registered, too. Now Visual Studio will find it.

There is no problem to create 64 Bit executables with the 32 Bit version of the ActiveX Control VisionQ400Control.
They will run.

http://stackoverflow.com/questions/13603854/visual-studio-2012-64-bit

Q.VITEC ActiveX Controls

9

2 Methods of the ActiveX Control VisionQ400Control

Q.VITEC ActiveX Controls

10

2.1 General Methods

2.1.1 connectToServer(sleepTime)

The method connectToServer connects a client to the Vision Q.400 server. Before all other methods can be used, the
client must be connected to Vision Q.400 by a call of this method.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] sleepTime LONG Time in seconds to sleep before the connection to

Vision Q.400 is performed.

Remarks

If Vision Q.400 is already connected, the method returns immediately.

If sleepTime is less or equal to zero, the connection is immediately performed without any sleep.

If Vision Q.400 is not running, it is implicitly started by a call to this method.

If Vision Q.400 is started by a client, and the Vision Q.400 property “Interfaces -> OLE -> Start Vision Q.400 Hidden by
an OLE Client” is checked, Vision Q.400 is started without any visible window. To show Vision Q.400 later, the method
showServer() with the parameter show set to TRUE may be called.

If Vision Q.400 is started by a client and the creation fails, e.g. by a missing license file, a timeout of two minutes
occurs before connectToServer returns. (The length of the timeout is fixed by MICROSOFT and cannot be influenced.)

The sleep time is especially helpful if you wish to establish an automatic connection between Vision Q.400 and a
client at system startup. We found out that if we do not have a delay of 20 seconds between the automatic start of
the client and its connection to Vision Q.400, synchronization problems between grabber and camera can be
happen. In this case we recommend connecting your client to Vision Q.400 with the call connectToServer(20).

Please refer to the function “setProperty()” which can be used to set connection parameters.

Visual Basic Example

Private Sub Command1_Click()

Dim bReturn As Boolean

Dim sErrorText As String

bReturn = VisionQ400Control1.connectToServer(0)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.1.2 disconnectFromServer(saveSettingsSetupMode)

The method disconnectFromServer disconnects a client from the Vision Q.400 server. A call to all other methods will
fail until the client is connected again.

Return Value

Q.VITEC ActiveX Controls

11

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] saveSettingsSetupMode SHORT -1..1 This parameter is only used if Vision Q.400 is in setup mode, and if
it is finished when the last client is disconnected. (See the remarks
section.)

- 1: The currently open application is not saved, even if it was
modified.

 0: If the currently open application was modified, Vision

 Q.400 displays a dialog, and it is asked if the application

 should be saved.

If “Cancel” is selected, this is ignored, that means Vision
Q.400 is finished, but the currently open application is
not saved, even if it was modified.

If the Vision Q.400 user rights management is activated,
and the currently logged in user does not have the
permission to save an application, the currently open
application is not saved.

 1: The currently open application is saved if it was modified.

In all cases, if Vision Q.400 is password protected, the password is
not asked for.

Remarks

If Vision Q.400 was started by a call to connectToServer, it is finished when the last client is disconnected.

If Vision Q.400 is NOT started by a client, and is hidden, and the last client is disconnected, Vision Q.400 is NOT
finished, but it can only be seen in the task manager. To avoid this, Vision Q.400 is shown if the last client is
disconnected.

Visual Basic Example

Private Sub Command2_Click()

Dim bReturn As Boolean

Dim sErrorText As String

bReturn = _

 VisionQ400Control1.disconnectFromServer(0)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.1.3 exitServer()

The method exitServer is called to exit Vision Q.400. The additional behaviour beside exiting Vision Q.400 depends on
the ”Shut Down On Exit” settings in the “Vision Q.400 Settings...” item of Vision Q.400.

Return Value

VARIANT_BOOL

Q.VITEC ActiveX Controls

12

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument

none

Remarks

If several clients are connected to Vision Q.400, and one client calls exitServer, all other clients are disconnected from
Vision Q.400, too, and they receive the signal VISIONQ400_SIG_EXITING. The client, which does call this method, does
not receive the signal VISIONQ400_SIG_EXITING.

If a password is set in Vision Q.400, the password is not asked for.

The method exitServer fails in setup mode.

Visual Basic Example

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim sErrorText As String

bReturn = VisionQ400Control1.exitServer()

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.1.4 getState()

The method getState returns the current state of Vision Q.400.

Return Value

LONG

The return value contains the current state of Vision Q.400. It is a combination of any of the following values:

Name Value Meaning

VISIONQ400_STATE_IN_SETUP_MODE 0x000000001 Vision Q.400 is in setup mode

VISIONQ400_STATE_IN_RUN_MODE 0x000000002 Vision Q.400 is in run mode

VISIONQ400_STATE_APPLICATION_LOAD 0x000000004 An application is loaded or Vision Q.400 is loading an
application

VISIONQ400_STATE_READY 0x000000008 Vision Q.400 is ready

VISIONQ400_STATE_START_WILL_FAIL 0x000000100 This is not a state, but the next three states will have
set this bit, which means that a start of Vision Q.400
will always fail without further actions

VISIONQ400_STATE_FATAL_ERROR 0x000000300 A fatal error has occurred

VISIONQ400_STATE_STOPPED_BY_ACTION 0x000000500 Vision Q.400 has been stopped by an ACTION

VISIONQ400_STATE_IS_REPETITIVE 0x000000900 Vision Q.400 is repetitive starting

Argument

none

Remarks

If the return value is zero, Vision Q.400 is not connected to the client.

If the loading of an application is started by the graphical user interface of Vision Q.400, getState() may return
VISIONQ400_STATE_APPLICATION_LOAD, even if the loading of the application may not be finished yet.

If one of the methods of the ActiveX control fails, you should call one of the error handling methods to get further
information, but not getState(). An exception is the method startApplication. If this method returns FALSE, you may

Q.VITEC ActiveX Controls

13

call getState() and test for the state VISIONQ400_STATE_START_WILL_FAIL. This state signals that all further calls of
startApplication() will return FALSE until the cause of the failure will be removed by an appropriate action.

In the setup mode VISIONQ400_STATE_READY is never set, in the run mode getState() returns the PCReady state of
Vision Q.400. Be aware that getState() is not a substitution of the synchronisation mechanism of Vision Q.400. This
synchronization mechanism is described in the Vision Q.400 reference manual in the chapter “Interfaces ->
Introduction”. GetState() should only be used to retrieve the PCReady state of Vision Q.400 if a client is connected to
Vision Q.400 in the run mode to initialize the ready state in the client correctly.

Visual Basic Example

Option Explicit

Const VISIONQ400_STATE_IN_SETUP_MODE = &H1

Const VISIONQ400_STATE_IN_RUN_MODE = &H2

Const VISIONQ400_STATE_APPLICATION_LOAD = &H4

Const VISIONQ400_STATE_START_WILL_FAIL = &H100

Const VISIONQ400_STATE_FATAL_ERROR = &H300

Const VISIONQ400_STATE_STOPPED_BY_ACTION = &H500

Const VISIONQ400_STATE_IS_REPETITIVE = &H900

Private Sub Command1_Click()

Dim lReturn As Long

Dim sErrorText As String

lReturn = VisionQ400Control1.getState()

If lReturn = 0 Or lReturn = -1 Then

'If the return value is zero, Vision

'Q400 is not connected to the client.

'If the return value is -1, 'information could not be got

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

Else

 If lReturn And VISIONQ400_STATE_IN_SETUP_MODE Then

MsgBox ("Vision Q.400 is in setup mode")

 End If

End If

End Sub

2.1.5 getProperty(name, parameter)

The method getProperty returns the current value(s) of a Vision Q.400 property.

Return

VARIANT

For the current type and meaning of this VARIANT please refer the description of the concerning property.

The method returns an empty VARIANT if it fails. In this case, you can call the methods

getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] name BSTR Name of the Vision Q.400 property e.g. “IsVisible”.

[IN] parameter VARIANT Parameter which describes the property to get in detail. For the current type and
meaning of this VARIANT please refer to the description of the concerning property.

Property Name Parameter Returned VARIANT
Type

Comment

AllowedShutterTimes VT_I2

The camera number for
which all allowed shutter
times will be got.

VT_BSTR | VT_ARRAY

The format of the
strings is the same as
shown in the
camera’s shutter
property page of
Vision Q.400.

The returned array contains
one entry for each allowed
shutter time.

If no shutter times are allowed,
the array contains one entry,
the empty string.

ApplicationName VARIANT Type: VT_BSTR Returns the path name of an

Q.VITEC ActiveX Controls

14

VT_EMPTY or VT_I4

The number of an
application, for which
the path name should be
returned.

A number is assigned to
an application in the
menu Application ->
Application

Numbers…

 application.

If the given parameter type is
VT_EMPTY, the parameter
value 0 is used.

Parameter Value == 0:

The path name of the currently
loaded application is returned.
If no application is loaded, an
empty VARIANT is returned. If
the current application was
never saved that means its path
name does not exist, “” is
returned.

1 <= Parameter Value <= 9999:

If the given parameter value is
assigned to an application, the
path name of this application is
returned, otherwise the empty
string is returned.

ApplicationNumber VARIANT Type:

VT_EMPTY or

VT_ BSTR

Path name of the
application, for which its
assigned number should
be returned.

A number is assigned to
an application in the
menu Application ->
Application

Numbers

VT_I4

Returns the number of an
application.

If the given parameter type is
VT_EMPTY, or if the parameter
is the empty string, the path
name of the currently loaded
application is used.

If the path name of the
currently loaded application is
used, and no application is
loaded, an empty VARIANT is
returned. If the current
application was never saved
that means a number cannot be
assigned to it, - 1 is returned.

If an application number is
assigned to the given path
name, this number is returned,
otherwise – 1 is returned.

CheckerNames

Without any
modification, all
checkers of a sequence
are returned.

To get only the checkers
of a special type you can
append a blank and one
of the following strings
to CheckerName:

VARIANT Type: VT_I2
and VT_ARRAY

(one Dimensional, two
values)

[0]: camera number for
which the checker
names should be
returned

[1]: sequence number

VT_BSTR and
VT_ARRAY

(a one dimensional
array, which contains
the checker names)

Returns the ActiveX Names of
all checkers, which belongs to
the camera with the given
number and to the sequence
with the given number.

If the sequence number is 0,
the names of all checkers of all
sequences belonging to the
given camera are returned.

Q.VITEC ActiveX Controls

15

FE: feature

 extraction

EA: exposure

 adjustment

WI: window

 checker

ED_B: edge

 detection binary

ED_G: edge

 detection grey

DI: difference

 checker

CM: contour

 matching

OCR: character

 recognition

CR: code reader

PRA: all types

 of position and

 rotation

 adjustment

GEO: all types of

 geometric

 checkers

ED_GP: edge detection

 grey protection

OS: Object Shape

IC: Indicator

If user defined checkers
are used, the short
name of the

Checker, which has to
be used, is documented
in the description of the
appropriate dll.

Types: the returned

String array contains a

list of the above listed

strings, including the

short names of all user

defined checkers.

for which the checker
names should be
returned

VT_EMPTY:

The camera number and
the sequence number
are set to 0.

VT_I2:

The camera number is
set to the given number,
and the sequence
number are set to 0.

VT_EMPTY

The checker names are
returned in the same sequence
as they are shown in the
sequence list.

If the camera number is 0, the
names of all checkers of all
cameras belonging to the given
sequence are returned.

If the camera number and the
sequence number are 0, the
names of all checkers belonging
to the currently loaded
application are returned.

If no checker is found, the
returned array contains one
entry, the empty string.

CurrentShutterTime VT_I2

The camera number for
which the currently set
shutter time will be got.

VT_BSTR

Returns the currently set
shutter time.

ExeGroupToStart VT_EMPTY

The parameter is
ignored.

VT_UI2

At time only used together with
the camera interface:

If Vision Q.400 is started by a
camera, Vision Q.400 can use
this execution group number.

Q.VITEC ActiveX Controls

16

Graphic Update On VT_BSTR

“All”

“Image”

“Checkers”

“Indicators”

“Names”

VT_BOOL

-1 and 1: the queried
graphical update is
switched on

 0 : : the queried
graphical update is
switched off

For “Names”:

VT_BSTR | VT_ARRAY

The “Graphic Update” settings
in the run mode, e.g. if
Parameter is “Checkers” – 1 or
1 are returned if the grahic
update for checkers is switched
on, 0 if it is switched off.

For “All”, -1 or 1 are only
returned if all grahic update is
swiched on, 0 if at least one is
switched off.

“Names” is an exception: it
returns all other possible
parameter values.

Graphic Update Off VT_BSTR

“All”

“Image”

“Checkers”

“Indicators”

“Names”

VT_BOOL

-1 and 1: the queried
graphical update is
switched OFF

 0 : : the queried
graphical update is
switched ON

For “Names”:

VT_BSTR | VT_ARRAY

The “Graphic Update” settings
in the run mode, e.g. if
Parameter is “Checkers” – 1 or
1 are returned if the grahic
update for checkers is switched
OFF, 0 if it is switched ON.

For “All”, -1 or 1 are only
returned if all grahic update is
swiched OFF, 0 if at list one is
swiched ON.

“Names” is an exception: it
returns all other possible
parameter values.

IgnoreData VARIANT Type:
VT_EMPTY

The parameter is
ignored.

VT_BOOL

-1 and 1: data AND
images are not sent,

 0: data AND images
are sent

Returns if data and images are
sent or not.

For details see
setProperty(IgnoreData, …)

ImageBufferDim VT_I2

1 or 2:

The dimension of the
array, which is used in
the event
ImageAvaliable() and in
the method
getImage()to transfer
the gray values of an
image.

Default: 2

VT_EMPTY

Value is ignored.

The new dimension will be used
for all images, which transfer
will be enabled by
setSendImage() or
setSendImagePart() after the
setting of the new dimension.

That means that if the
dimension of the array has to
be changed for an image, the
new dimesion has to be set and
then setSendImage() or
setSendImagePart() has to be
called again.

If VISUAL BASIC .Net is used,
and the transferred image has
to be inserted into a picture
box, the dimension of the safe
array has to be 1 for an fast
insertion!

ImagePixelSizeInByte VT_I2 VT_I2 Returns the pixel size of an

Q.VITEC ActiveX Controls

17

The camera number for
which the pixel size in
Byte will be got.

 image in Byte.

ImageType VT_I2

The camera number for
which the image type
will be got.

VT_BSTR

“Gray” for 8 bit (
1Byte) gray value
images

“Color” for 24 bit (3
Byte) RGB color
images

Returns the image type.

IsVisible VT_EMPTY

The parameter is
ignored.

VT_BOOL

-1 and 1 as visible,

 0 as not visible
(hidden)

Returns if Vision Q.400 is
visible.

CheckClientLicense VT_BSTR

License string to check.

VT_UI1

This property can be used to to
license an ActiveX client by a
Vision Q.400 dongle.

Returns the information if the
client can be licensed by the
provided license string.

0 = The client cannot be
licensed by a valid dongle, and
a valid time limited license file
is not found.

1 = The client can be licensed
by a valid dongle.

3 = The client can be licensed
by a time limited license file.
The client has to decide if it can
be licensed.

A not licensed simulation
version of Vision Q.400.always
returns 0.

LicenseType VT_BSTR

“Vision Q.400”:

The license type of
Vision Q.400 will be got.

“Application”:

The license type
currently set for an
application is got.

“Application Original”:

The “original” license
type of an application.

VT_EMPTY or the empty
string:

VT_BSTR “Application”:

If an application is currently
loaded the license type which is
currently set for the application
is returned.

If an application is not loaded,
the “default” license type of a
newly created application. (This
is the license type of Vision
Q.400.)

Q.VITEC ActiveX Controls

18

The same as VT_BSTR

“Vision Q.400”.

LiveImage VT_I2

The camera number for
which the display mode
will be got.

VT_BOOL

-1 and 1: camera is in

 live mode

 0 : camera is in

 memory
mode

Returns the display mode of the
camera.

This property works only in the
setup mode.

OLEDataTransferListInfo VARIANT Type:
VT_EMPTY

The parameter is
ignored.

VT_BSTR | VT_ARRAY

Returns the content of the OLE
datatransfer container (name
and datatype)

PropertyNames VARIANT Type:
VT_EMPTY

The parameter is
ignored.

VT_BSTR | VT_ARRAY

Returns the names of all
properties, which are
supported by Vision P400.

SpreadsheetRowNames VT_BSTR

“Results”:

The names of the
checker result rows are
returned.

“Formulas”:

The names of the
formula rows are
returned.

VT_BSTR | VT_ARRAY

The names of the
requested rows. The
name at the array
index 0 belongs to
row number 1, and
so one.

If the spreadsheet does not
contain rows of the requested
type, the returned array
contains exactly none entry, the
empty string.

SwitchInterfaceSending
Off

VT_BSTR

Name of the interface:

RS232,

P I/O,

File

VT_BOOL

-1 or 1: The interface

 does not send

 anything.

0: The interface

 does normally

 work.

If the interface sending is
switched off for an interface,
this interface does not sent any
data or events. To switch of an
interface the SetProperty()
function with the parameter
“SwitchInterfaceSendingOff”
must be used.

For OLE clients, the sending
cannot be switched off.

TransferredImage VT_I2

The camera number for
which information about
the transferred image
will be got.

VT_I4 | VT_ARRAY

(two dimension,
every dimension with
two values)

Returns information of the size
of the transferred image:

[0, 0]: x coordinate of the top
left

 corner of the transferred

 image (part)

[0, 1]: y coordinate of the top
left

 corner of the transferred

 image (part)

 [1, 0]: number of transferred

 columns

[1, 1]: number of transferred
rows

Q.VITEC ActiveX Controls

19

SendImage VT_I2

The camera number for
which information about
the sending of an image
will be got.

VT_BOOL

-1 or 1: The image is

 sent

 automatically.

0: The image is

 not sent

 automatically.

Returns the information if an
image which is set by the
methods setSendImage() or
setSendImagePart() is sent
automatically after each
execution of an application
with the help of the event
ImageAvaliable(), or if it is not
sent, and can only be accessed
with help of the method
getImage().

UserDataNames VT_EMPTY

The parameter is
ignored.

VT_BSTR | VT_ARRAY

The user data names,
under which user
data is stored in the
currently loaded
application.

If user data is not stored in the
currently loaded application,
getProperty() returns TRUE,
and the returned string array
contains exactly one entry, the
empty string.

Version VT_BSTR

“Version”:

The version type of

the currently running
Vision Q.400 version.

“Number”:

The version number of
the currently running
Vision Q.400 version.

VT_EMPTY or the empty
string:

The same as VT_BSTR

“Version”.

VT_BSTR “Version” values:

“Full”: The full version of Vision
Q.400 is currently running.

“Simulation”: The simulation
version of Vision Q.400 is
currently running.

“Demo”: The demo version of
Vision Q.400 is currently
running.

The “Number” string is
formatted as shown in the
Vision Q.400 help about box.

VersionNumber VT_EMPTY

The parameter is
ignored.

VT_I4

The version number
of the currently
running Vision Q.400
version.

The returned version
number has the
format: Mmmbbpp
with:

M: major version

mm: minor version

bb: build version

pp: private version

BlackLevel VT_I2

The camera number for
which the black level,
and it’s limits, will be
got.

VT_R8 and VT_ARRAY

(one dimension,
three values)

[0] current value

This property is only supported
by GigE Vision cameras.

Q.VITEC ActiveX Controls

20

[1] minimum allowed
value

[2] maximum allowed
value

Name VT_EMPTY VT_BSTR

Returns a unique name for the
OLE connection.

Gain VT_I2

The camera number for
which the gain, and it’s
limits, will be got.

VT_R8 and VT_ARRAY

(one dimension,
three values)

[0] current value

[1] minimum allowed
value

[2] maximum allowed
value

This property is only supported
by GigE Vision cameras.

2.1.5.1 Accessing the Parallel I/O Channnels

The method getProperty can be used to request the values of the Parallel I/O channels of Vision Q.400.

Property Name Parameter Returned VARIANT Type Comment

PioBoardName VT_EMPTY

The parameter is
ignored.

VT_BSTR

Returns the name of the used
Parallel I / 0 card like shown
under Vision Q.400 -> Interfaces
-> Properties.

PioInputValues VT_EMPTY

 Same behaviour as:

Parameter type: VT_BSTR

Parameter name: “All”

 VT_BSTR

Names

VT_BSTR | VT_ARRAY

Returns the names of all input
channels as given in the table
below.

VT_BSTR

All

All Signals

All Data

VT_I4 Parameter value is “All”:

The values of all input channels.

Parameter value is “All Signals”:

The values of all input signal
channels. In the returned result,
the bits of the input data
channels are cleared.

Parameter value is “All Data”:

The values of all input data
channels. In the returned result,
the bits of the input signal
channels are cleared, and the
bits of the input data channels
are shifted into the rightmost
byte of the result.

The assignment of a bit value to
an input channel is given in the
table below.

 VT_BSTR VT_BOOL Parameter value is one of the

Q.VITEC ActiveX Controls

21

Property Name Parameter Returned VARIANT Type Comment

 -1 and 1: channel is set

 0 : the channel is not

 set

input channel names.

 VT_I4

VT_BOOL

-1 and 1: channel is set

 0 : the channel is not

 set

Parameter value is one of the
input channel numbers.

The behavior is the same as if an
input channel name is given.

The assignment of an input
channel number to an input
channel name is given in the
table below.

To be compatible between
different Parallel I/O hardware
types, it is strictly recommented
to use the input channel names.

PioOutputValues VT_EMPTY

 Same behaviour as:

Parameter type: VT_BSTR

Parameter name: “All”

 VT_BSTR

Names

VT_BSTR | VT_ARRAY

Returns the names of all output
channels as given in the table
below.

VT_BSTR

All

All Signals

All Data

VT_I4

Parameter value is “All”:

The values of all output
channels.

Parameter value is “All Signals”:

The values of all output signal
channels. In the returned result,
the bits of the output data
channels are cleared.

Parameter value is “All Data”:

The values of all output data
channels. In the returned result,
the bits of the output signal
channels are cleared, and the
bits of the output data channels
are shifted into the rightmost
byte of the result.

The assignment of a bit value to
an output channel is given in the
table below.

VT_BSTR

VT_BOOL

-1 and 1: channel is set

 0 : the channel is not

 set

Parameter value is one of the
output channel names.

 VT_I4

VT_BOOL

-1 and 1: channel is set

 0 : the channel is not

 set

Parameter value is one of the
output channel numbers.

The assignment of an output
channel number to an output

Q.VITEC ActiveX Controls

22

Property Name Parameter Returned VARIANT Type Comment

channel name is given in the
table below.

To be compatible between
different Parallel I/O hardware
types, it is strictly recommented
to use the ouput channel names.

PioOutputData VT_EMPTY

 Same behaviour as:

Parameter type: VT_BSTR

Parameter name: “All”

 VT_BSTR

Names

VT_BSTR | VT_ARRAY

Returns the names of all output
data channels as given in the
table below.

VT_BSTR

All

All Data

VT_I4 The values of all output data
channels. In the returned result,
the bits of the output data
channels are shifted into the
rightmost byte of the result.

The assignment of a bit value to
an output data channel is given
in the table below.

VT_BSTR

VT_BOOL

-1 and 1: channel is set

 0 : the channel is not

 set

Parameter value is one of the
output data channel names.

 VT_I4

VT_BOOL

-1 and 1: channel is set

 0 : the channel is not

 set

Parameter value is one of the
output data channel numbers.

The assignment of an output
data channel number to an
output data channel name is
given in the table below.

To be compatible between
different Parallel I/O hardware
types, it is strictly recommented
to use the ouput data channel
names.

Parallel I / O Input Channels:

If the property name is PioInputValues and the parameter name is “All Data”, the data bits are shifted into the
rightmost byte of the result. That means Data 1 has bit number 1, and Data 8 has bit number 8.

 ANPC850V2D ANPC850V3D

Channel Name Channnel Number Bit Number Channel Number Bit Number

Start 1 1 0 1

Ack 2 2 1 2

Change Application 3 3 2 3

Reset Statistics 4 4 3 4

Shut Down 5 5 4 5

Lock Grab 6 6 5 6

Q.VITEC ActiveX Controls

23

Start/Stop Run Mode 7 7 6 7

reserved 8 8 7 8

Data 1 9 9 8 9

Data 2 10 10 9 10

Data 3 11 11 10 11

Data 4 12 12 11 12

Data 5 13 13 12 13

Data 6 14 14 13 14

Data 7 15 15 14 15

Data 8 16 16 15 16

Parallel I / O Output Channels:

If the property name is PioOutputValues and the parameter name is “All Data”, or if the property name is
PioOutputData and the parameter name is “All”, the data bits are shifted into the rightmost byte of the result. That
means Data 1 has bit number 1, and Data 8 has bit number 8.

 ANPC850V2D ANPC850V3D

Channel Name Channel Number Bit Number Channel Number Bit Number

PCReady 1 2 16 1

REnd 2 3 17 2

Strobe 3 17 18 3

Application Switch Completed 4 4 19 4

Byte Overflow/Start Lost 5 5 20 5

Error 6 6 21 6

Execution Result Error 7 7 22 7

Action Error 8 8 23 8

Data 1 9 9 24 9

Data 2 10 10 25 10

Data 3 11 11 26 11

Data 4 12 12 27 12

Data 5 13 13 28 13

Data 6 14 14 29 14

Data 7 15 15 30 15

Data 8 16 16 31 16

Q.VITEC ActiveX Controls

24

2.1.5.2 User Rights Management

The method getProperty can be used to query information about the Vision Q.400 User Rights Management.

Property Name Parameter Returned VARIANT Type Comment

IsUserRightsManagementActivated

VT_EMPTY

The parameter
is ignored.

VT_BOOL

-1 and 1 as activated,

 0 as not activated

Returns if the Vision
Q.400 User Rights
Management is
activated ore not.

UserRightsManagementUsers

VT_EMPTY

The parameter
is ignored.

VT_VARIANT | VT_ARRAY

The returned VARIANT
array contains always an
even number of
VARIANTS: the even array
elements are of type
VT_BSTR, the odd array
elements of type VT_UI4.

Returns information of
all existing Vision Q.400
users. For every user,
two VARIANTs are used:

The first contains the
user name name of the
user as VT_BSTR, the
second his user level as
VT_UI4.

UserRightsManagementCurrentUser

VT_EMPTY

The parameter
is ignored.

VT_BSTR The name of the
currently logged in
Q.400 user, or the
empty string, if a user is
not currently logged in.

Q.VITEC ActiveX Controls

25

2.1.6 setProperty(name, parameter, values)

The method setProperty set the new value(s) of a Vision Q.400 property.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] name BSTR Name of the Vision Q.400 property e.g. “LiveImage”.

[IN] parameter VARIANT Parameter which describes the property to set in more details. For the current type
and meaning of this VARIANT please refer the description of the concerning property.

[IN] values VARIANT Values to be set. For the current type and meaning of this VARIANT please refer the
description of the concerning property.

Remarks

The method setProperty does not switch the ready state of Vision Q.400 to off. That means that the execution of an
application can be started before the method setProperty will return. It is strictly recommended not to start the
execution of an application before the method will return. If this situation is possible, you should use the method
interruptStartSignals() to forbid the execution of an application before the method setProperty is called. And you
should use the method interruptStartSignals() afterwards to allow the execution of an application again.

Property Name Parameter Values Comment

ComTimeout VT_I4

Timeout value in
milliseconds.

Default: 5000

VT_EMPTY

Values is ignored.

Determines how long the calling
application waits for a response
from the server before taking
further action.

Attention: You have to set this
parameter before you call
“connectToServer”!

NotRespondingDialog VT_BOOL

-1 and 1: enable the
 dialog

 0 : disable the dialog

Default: 0

VT_EMPTY

Values is ignored.

When a COM timeout occurred
the OLE "busy dialog box" is
displayed so that the user can
choose to cancel or retry the call.
You can enable or disable this
dialog.

Attention: You have to set this
parameter before you call
“connectToServer”!

BusyDialog VT_BOOL

-1 and 1: enable the
 dialog

 0 : disable the dialog

Default: 0

VT_EMPTY

Values is ignored.

When a keyboard or mouse
message is pending during a call
and the COM timeout occurred,
the "not responding" dialog box is
displayed.

Attention: You have to set this
parameter before you call
“connectToServer”!

CancelGrab VT_I2

The camera number
for which the grab will
be cancelled.

VT_EMPTY

Values is ignored.

Cancels a started grab of the
camera.

CurrentShutterTime VT_I2 VT_BSTR Sets the shutter time for the

Q.VITEC ActiveX Controls

26

Property Name Parameter Values Comment

The camera number
for which the shutter
time will be set.

The format of the string
is the same as shown in
the camera’s shutter
property page of Vision
Q.400.

camera.

GrabNexImage VT_I2

The camera number
for which the next
image will be set.

VT_BSTR

Path of the image which
should be used for the
next execution of Vision
Q.400.
In case the string is
empty or ‘-‘, the next
image of the selected
camera is used (same
like F3 Key).

Sets the image for the next
execution of Vision Q.400.

Attention: This works only with a
licensed simulation version of
Vision Q.400.

ExeGroupToStart VT_UI2

The execution group
number to start with.

VT_EMPTY

Values is ignored.

At time only used together with
the camera interface:

If Vision Q.400 is started by a
camera, Vision Q.400 can use this
execution group number.

Graphic Update On VT_BSTR

“All”

“Image”

“Checkers”

“Indicators”

VT_EMPTY

Values is ignored.

The “Graphic Update” setting in
the run mode of the geviven
parameter is swiched on. E.g. if
Parameter is “Checkers” the grahic
update for checkers is switched
on.

If “All” is given, all grahic update is
swiched on.

Graphic Update Off VT_BSTR

“All”

“Image”

“Checkers”

“Indicators”

VT_EMPTY

Values is ignored.

The “Graphic Update” setting in
the run mode of the geviven
parameter is swiched off. E.g. if
Parameter is “Checkers” the grahic
update for checkers is switched
off.

If “All” is given, all grahic update is
swiched off.

IgnoreData VARIANT Type:
VT_EMPTY

The parameter is
ignored.

VT_BOOL

-1 and 1: data AND
images are not sent,

 0: data AND images are
sent

If this function is called with the
parameter values -1 or 1, data and
images are not sent to the
CALLING client furthermore: each
client which not want to receive
data or images have to call this
function.

By calling the function with the
value 0, the sending is switched on
again.

The default value is sending data
and images.

Q.VITEC ActiveX Controls

27

Property Name Parameter Values Comment

This property is useful if you want
to use an asynchronous client: you
use to threads, one thread for
event handling and one thread for
data handling. For the event
handling thread you can switch off
the sending of data and images to
save time.

ImageBufferDim VT_I2

1 or 2:

The dimension of the
array, which is used in
the event
ImageAvaliable() and
in the method
getImage()to transfer
the gray values of an
image.

Default: 2

VT_EMPTY

Values is ignored.

The new dimension will be used
for all images, which transfer will
be enabled by setSendImage() or
setSendImagePart() after the
setting of the new dimension.

That means that if the dimension
of the array has to be changed for
an image, the new dimesion has to
be set and then setSendImage() or
setSendImagePart() has to be
called again.

If VISUAL BASIC .Net is used, and
the transferred image has to be
inserted into a picture box, the
dimension of the safe array has to
be 1 for an fast insertion!

LiveImage VT_I2

The camera number
for which the display
mode will be set.

VT_BOOL

-1 and 1: the camera will

 will be set to

 live mode

 0 : the camera will

 will be set to

 memory mode

Sets the display mode of the
camera.

This property works only in the
setup mode.

RefreshWhiteBalance VT_I2

The camera number
for which the white
balance should be
refreshed.

VT_EMPTY

Values is ignored.

Refreshing of the white balance
means that the reference values
used for the white balance are
recalculated: a new image without
white balancing is grabbed to
recalculate the reference values.
These new reference values are
used for further white balancing.

If Vision Q.400 is not ready the
white balance cannot be
refreshed. Before refreshing the
ready state of Vision Q.400 is set
to off, and it is set to on again
after refreshing.

Attention:

If external trigger is used for the
affected camera, it has to be
made sure that the new image
used for the recalculation can be
grabbed without any error , e.g. a
timeout which is caused by a

Q.VITEC ActiveX Controls

28

Property Name Parameter Values Comment

missing external trigger.

This property works only in the run
mode.

DeleteNGImages VT_EMPTY

- Deletes the NG images which are
stored by an Action in the
memory.

SwitchInterfaceSendingOff VT_BSTR

Name of the interface:

RS232,

P I/O,

File

VT_BOOL

-1 or 1: The interface

 does not send

 anything.

0: The interface

 does normally

 work .

If the interface sending is switched
off for an interface, this interface
does not sent any data or events.

For OLE clients, the sending cannot
be switched off.

If an OLE client switches the
sending off, and it disconnects
afterwards, the sending is NOT
switched on again!

SendImage VT_I2

The camera number
for which the
automatically sending
of an image is
switched off or on.

VT_BOOL

-1 or 1: The image is

 sent

 automatically .

0: The image is

 not sent

 automatically.

TRUE:

The image which is set by the
methods setSendImage() or
setSendImagePart() is sent
automatically after each execution
of an application with the help of
the event ImageAvaliable().

FALSE

It is not sent automatically, and
can only be accessed with help of
the method getImage().

The default value is TRUE.

BlackLevel VT_I2

The camera number
for which the black
level will be set.

VT_R8

The new value of the
black level.

This property is only supported by
GigE Vision cameras

Gain VT_I2

The camera number
for which the gain will
be set.

VT_R8

The new value of the
gain.

This property is only supported by
GigE Vision cameras

2.1.6.1 Accessing the Parallel I/O Output Data Channnels

The method setProperty can be used to set the Parallel I/O data channels of Vision Q.400. To do so, an OLE client has
to request the access to these channels.

Property Name Parameter Values Comment

PioRequestOutputData VT_EMPTY

The parameter is
ignored.

VT_BOOL:

-1 and 1: the client

requests the setting of
the output data
channels of the parallel
I/O card

If at least one OLE client has
requested to set the output data,
Vision Q.400 does not set any
output data channel.

Vision Q.400 behaves as if no data
has to be sent to the Parallel I/O

Q.VITEC ActiveX Controls

29

Property Name Parameter Values Comment

 0: the client will
not set the output data.

interface.

The output data channels of the
Parallel I/O interface can only be
set by an OLE client by the call of
setProperty() with the parameter
name “PioOuputData.”

Because Vision Q.400 behaves as if
no data has to be sent to the
Parallel I/O interface, Vision Q.400
sets the PCReady signal even if

setProperty() is not called before.
Therefore if the output data
channels of the Parallel I/O
interface are set by an OLE client,
this client is responsible for any
synchronization.

PioOutputData VT_EMPTY Same behaviour as:

Parameter type: VT_BSTR

Parameter name: “All”

 VT_BSTR

All

All Data

VT_UI1 All output data channels are set at
once. For each data channel the
value of it’s bit number is used for
the setting.

The assignment of a bit number to
an output data channel is given in
the table below.

If an application is loaded, the
setting for the “Handshake” and
the “Forced Reset” of the
application are used. This setting
are given in the Parallel I/O’s
”Objects for Data Transfer”
property page of Vision Q.400. If
no application is loaded, the data
is transferred without
“Handshake” and without “Forced
Reset”.

 VT_BSTR

VT_UI1 Parameter value is one of the
output data channel names: the
appropriate channel is set.

The channel names are given in
the table below.

A channel is set if the given value
is not equal to zero. Otherwise it is
reset.

The set value of a channel will not
be changed until it will be explicitly
changed by the client.

 VT_I4 VT_UI1 Parameter value is one of the

Q.VITEC ActiveX Controls

30

Property Name Parameter Values Comment

output data channel numbers.

The behavior is the same as if a
channel name is given.

The assignment of an output data
channel number to an output data
channel name is given in the table
below.

To be compatible between
different Parallel I/O hardware
types, it is strictly recommented to
use the ouput data channel
names.

Parallel I / O Output Data Channels:

 ANPC850V2D ANPC850V3D

Channel Name Channel Number Bit Number Channel Number Bit Number

Data 1 9 1 24 1

Data 2 10 2 25 2

Data 3 11 3 26 3

Data 4 12 4 27 4

Data 5 13 5 28 5

Data 6 14 6 29 6

Data 7 15 7 30 7

Data 8 16 8 31 8

The bit number 1 is the rightmost bit in the ouput byte.

2.1.6.2 User Rights Management

The method setProperty can be used to log in and out Vision Q.400 users.

Property Name Parameter Values Comment

UserRightsManagementUserLogin

VT_BSTR

The name of the
Q.400 user to log
in.

VT_BSTR

His password.

A Vision Q.400 cannot be
logged in, if Vision Q.400 is in
the run mode and the user
does not have the right to
step into the run mode, or he
does not have the right to
save an application. (The last
right is required for stepping
into run mode, because an
application may be implicitly
saved in the run mode.)

UserRightsManagementUserLogout

VT_BOOL

or VT_EMPTY

This parameter is

VT_BSTR

or VT_EMPTY

This parameter is

In the run mode the
application is never saved,
even if it is required by the
parameter.

Q.VITEC ActiveX Controls

31

Property Name Parameter Values Comment

only used in the
setup mode:

-1 and 1 as save
the current
application on
logout

 0 as do not save.

VT_EMPTY means
do not save.

only used in the
setup mode:

The name of the
file to which the
application should
be saved.

If the name is the
empty string, or
Values is
VT_EMPTY, the
current application
file name is used.

If the file name is the empty
string, and the application was
never saved, an error will
occur, because an application
file name does not exist.

If the currently logged in user
does not have the right to
save an application, saving is
ignored, an the application is
closed. (This is done to avoid
that application changes of
the unatherized user may be
saved later bay an autherized
user.)

2.1.7 interruptStartSignals(inhibit)

The method interruptStartSignals inhibits or allows the start signal in the run mode. If the start signal is inhibited, it is
not accepted from any Vision Q.400 interface, not either from the start application button in the GUI of Vision Q.400
or the <F5> key.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] inhibit VARIANT_BOOL TRUE: the start signals are inhibited.

FALSE: the start signals are allowed.

Remarks

If start signals are inhibited, the start application button in the GUI of Vision Q.400 is greyed in the run mode. In the
setup mode, the start signals from the start application button in the GUI and the key <F5> are accepted.

Q.VITEC ActiveX Controls

32

The method interruptStartSignals fails in setup mode.

Visual Basic Example

Private Sub Check1_Click()

Dim bReturn As Boolean

Dim bInhibit As Boolean

If Check1.Value = 0 Then 'Check1 is deaktivated

 bInhibit = True 'Start not possible

 bReturn = VisionQ400Control1. _

interruptStartSignals(bInhibit)

Else

 bInhibit = False 'Start possible

 bReturn = VisionQ400Control1. _

interruptStartSignals(bInhibit)

End If

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.1.8 showServer(show)

The method showServer shows or hides Vision Q.400.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] show VARIANT_BOOL TRUE: Vision Q.400 is shown.

Remarks

If Vision Q.400 is hidden, any visible window Of Vision Q.400 does not exist on the desktop.

If a fatal error occurred, Vision Q.400 cannot be hidden.

If Vision Q.400 is hidden in the setup mode, it may happen that a checker’s advanced settings dialog (e.g, The feature
extraction checker’s “Object Filters” “Advanced …” dialog) will not be hidden if it is visible on hiding Vision Q.400.

Visual Basic Example

Private Sub Command3_Click() 'Call ShowServer()

Dim bReturn As Boolean

Dim sErrorText As String

If bShow = False Then

 bShow = True

Else

 bShow = False

End If

bReturn = VisionQ400Control1.showServer(bShow)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.1.9 startRunMode()

The method startRunMode starts the run mode of Vision Q.400.

Q.VITEC ActiveX Controls

33

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument

none

Remarks

The function has no effect if Vision Q.400 is already in run mode.

If a password is set in Vision Q.400, the password is not asked for.

Visual Basic Example

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim sErrorText As String

bReturn = VisionQ400Control1.startRunMode()

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.1.10 stopRunMode()

The method stopRunMode stops the run mode of Vision Q.400 and enters the setup mode.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument

none

Remarks

The function has no effect if Vision Q.400 is not in run mode.

If a password is set in Vision Q.400, the password is not asked for.

StopRunMode() stops the run mode of Vision Q.400 always, even if Vision Q.400 is not ready, or a fatal error has
occurred.Therefore if the execution of an application should be correctly finished, make sure that Vision Q.400 is
ready if it’s run mode is stopped.

Visual Basic Example

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim sErrorText As String

bReturn = VisionQ400Control1.stopRunMode()

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

Q.VITEC ActiveX Controls

34

2.2 Application Methods

2.2.1 changeApplication(appNumber)

The method changeApplication starts the changing of the current application to the application with the number
appNumber.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] appNumber SHORT 1..9999 The number of the new application.

Remarks

The number of an application is set in the Vision Q.400 menu “Application -> Application Numbers...”.

If there are current running starts of the “old” application, they are finished correctly and not interrupted before the

current application is changed to the “new” application.

The old application is saved implicitly unless it is write protected. In this case it is not saved, and a warning may be
written in the Vision Q.400 error log. (For details if a warning is written or not see the chapter error management in
the Vision Q.400 manual.)

When the method returns, the change of an application is started, but not completed. The change is only completed
when, on success, the signal VISIONQ400_SIG_CHANGE_NOTIFY (“Application switch completed”) is received, or

when, on error, the signal VISIONQ400_SIG_PCERROR (“PC Error”) is sent. (For details for these synchronization
matters, please have a look into the Vision Q.400 reference manual chapter “Interfaces -> Introduction”.) Please do
use this synchrinization mechanism and not the method getState() to determine if the change of an application is
finished.

If appNumber is the number of the “old” application, the application switch is performed, too.

The changing of an application depends on the timeout value, which is set in Vision Q.400 in “Applications -> Vision
Q.400 Settings... -> Timeouts -> Application Change.” If the changing of an application takes longer than this timeout
value, the changing is stopped, the application to be loaded is closed, and the signal VISIONQ400_SIG_PCERROR is
sent. If getState() is called in this case, it will not return VISIONQ400_STATE_APPLICATION_LOAD.

The method changeApplication fails in setup mode.

Q.VITEC ActiveX Controls

35

Visual Basic Example

'Declaration of global variables

Option Explicit

Dim bApplicationSwitched As Boolean

Const VISIONQ400_SIG_CHANGE_NOTIFY = 64

Const VISIONQ400_SIG_PCERROR = 256

'Call the change application function

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim sErrorText As String

Dim iAppNumber As Integer

iAppNumber = 2

bReturn = VisionQ400Control1. _

 changeApplication(iAppNumber)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

 bApplicationSwitched = True

Else

 bApplicationSwitched = False

End If

End Sub

'Set the bApplicationSwitched Flag in the following sub

Private Sub VisionQ400Control1_SignalRecieved _

(ByVal signal As Long)

If signal = VISIONQ400_SIG_CHANGE_NOTIFY Then

 bApplicationSwitched = True

End If

End Sub

'Call StartApplication after receiving the

'Application switch signal

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim bLockGrab As Boolean

Dim sErrorText As String

Dim iGroupNumber As Integer

iGroupNumber = 0

bLockGrab = False

If bApplicationSwitched = True Then

 bReturn = VisionQ400Control1. _

startApplication(iGroupNumber, bLockGrab)

 If bReturn = False Then

 sErrorText = VisionQ400Control1. _

getLastErrorText()

 MsgBox (sErrorText)

End If

End If

End Sub

2.2.2 changeApplicationByName(applicationName)

The method changeApplicationByName starts the changing of the current application to the application
applicationName.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] applicationName BSTR The file name of the new application.

Remarks

If there are current running starts of the “old” application, they are finished correctly and not interrupted before the

Q.VITEC ActiveX Controls

36

current application is changed to the “new” application.

The old application is saved implicitly unless it is write protected. In this case it is not saved, and a warning may be
written in the Vision Q.400 error log. (For details if a warning is written or not see the chapter error management in
the Vision Q.400 manual.)

When the method returns, the change of an application is started, but not completed. The change is only completed
when, on success, the signal VISIONQ400_SIG_CHANGE_NOTIFY (“Application switch completed”) is received, or

when, on error, the signal VISIONQ400_SIG_PCERROR (“PC Error”) is sent. (For details for these synchronization
matters, please have a look into the Vision Q.400 reference manual chapter “Interfaces -> Introduction”.) ”.) Please do
use this synchrinization mechanism and not the method getState() to determine if the change of an application is
finished.

If appNumber is the number of the “old” application, the application switch is performed, too.

The changing of an application depends on the timeout value, which is set in Vision Q.400 in “Applications -> Vision
Q.400 Settings... -> Timeouts -> Application Change.” If the changing of an application takes longer than this timeout
value, the changing is stopped, the application to be loaded is closed, and the signal VISIONQ400_SIG_PCERROR is
sent. If getState() is called in this case, it will not return VISIONQ400_STATE_APPLICATION_LOAD.

The method changeApplicationByName fails in setup mode.

Visual Basic Example

Private Sub Command3_Click() 'Call Change Application

'by Name

Dim bReturn As Boolean

Dim sErrorText As String

Dim sApplicationName As String

sApplicationName = _

"C:\Vision Q400\Applications\Application1.nav"

bReturn = VisionQ400Control1. _

 changeApplicationByName(sApplicationName)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

 bApplicationSwitched = True

Else

 bApplicationSwitched = False

End If

End Sub

'Set the bApplicationSwitched Flag in the following sub

Private Sub VisionQ400Control1_SignalRecieved _

(ByVal signal As Long)

If signal = VISIONQ400_SIG_CHANGE_NOTIFY Then

 bApplicationSwitched = True

End If

End Sub

2.2.3 getApplicationProperty(property)

The method getApplicationProperty returns the property given in the parameter property.

Return Value

BSTR

The desired property. If an error occurs, or if the desired property is not set, the empty string is returned. If this
happens, you can call the method getLastErrorText()(or getLastErrorNumber()) to distinguish if an error occurred or if
the given property is not set. If the property is not set, getLastErrorText() returns the empty string. If an error

Q.VITEC ActiveX Controls

37

occurred, the returned string of getLastErrorText() is not empty. (getLastErrorNumber() returns zero if the property is
not set. On error the returned value is not zero.)

Argument Type Description

[IN] property SHORT See the Remarks section.

Remarks

The following properties are supported:

Name Value Meaning

VISIONQ400_PROP_PATH 1 the path of the currently loaded application file

VISIONQ400_PROP_NAME 2 the name of the currently loaded application

VISIONQ400_PROP_AUTHOR 3 the author of the currently loaded application

VISIONQ400_PROP_DESCRIPTION 4 the description of the currently loaded application

VISIONQ400_PROP_NUMBER 5 the number of the currently loaded application, if there is a number
assigned (otherwise the result is -1)

The path of an application file does only exist if the application is saved at least one time.

The name, author, and description of an application are user defined properties. They can be defined in Vision Q.400
under “Application -> Properties… ->Description”.

The application number can be assigned under “Application -> Application Numbers…”.

Visual Basic Example

Option Explicit

Const VISIONQ400_PROP_PATH = 1

Const VISIONQ400_PROP_NAME = 2

Const VISIONQ400_PROP_AUTHOR = 3

Const VISIONQ400_PROP_DESCRIPTION = 4

Const VISIONQ400_PROP_NUMBER = 5

Private Sub Command3_Click() 'Call GetApplicationProperty()

Dim sReturn As String

Dim sErrorText As String

Dim iProperty As Integer

iProperty = VISIONQ400_PROP_PATH

sReturn = VisionQ400Control1._

getApplicationProperty(iProperty)

If TypeName(sReturn) = Empty Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

Else

 Label1.Caption = sReturn

End If

End Sub

2.2.4 getDependentFileNames(navFileName, resultValue)

The method getDependentFileNames returns a list of file names (e.g. the classifier file of an OCR checker), which are
needed for the successful execution of the application given in navFileName.

The method works even if Vision Q.400 is not connected.

Return Value

VARIANT

This VARIANT contains the list of file names in an one Dimensional SAFEARRAY of type BSTR. The size of the array
depends on the number of returned file names. The VARIANT is empty if the call of the method fails or if the
application file does not contain dependent file information.

Q.VITEC ActiveX Controls

38

Argument Type Description

[IN] navFileName BSTR The name of the Vision Q.400 application file.

[OUT] resultValue SHORT* The state of the call of the method.

Remarks

resultValue can have the following values:

Value Meaning

 0 The call of the method failed.

 -1 The call of the method succeeded, but the given application file does not contain dependent file
information. To fix this the application has to be stored with Vision Q.400 at least once.

 -2 The call of the method succeeded, but the given application file does not contain dependent file, because
additional files are not needed for the successful execution of the application.

 1 The call of the method succeeded and dependent file information was returned.

If resultValue is not equal to one, the returned VARIANT is empty.

If resultValue is not equal to one, you can call the methods getLastErrorText() (or getLastErrorNumber()) for further
information.

Visual Basic Example

Private Sub Command1_Click()

 Dim vFileNames As Variant

 Dim yReturn As Integer

 vFileNames = VisionQ400Control1.getDependentFileNames("ic-code.nav", yReturn)

 Select Case yReturn

 Case 0

 MsgBox ("Call of method failed")

 Case -1

 MsgBox ("The call of the method succeeded, but the given application" & _

 "file does not contain dependent file information, because it is" & _

 "created with a Vision Q.400 version which does not write this type" & _

 "of information (version number less than 1.7).")

 Case -2

 MsgBox ("The call of the method succeeded, but the given application" & _

 "file does not contain dependent file information, although it is" & _

 "created with a Vision Q.400 version which writes this type" & _

 "of information." & _

 "(Additional files are not needed for the" & _

 "successful execution of the application).")

 End Select

 MsgBox "Dependent File 1: & CStr(vFileNames(0))"

End Sub

2.2.5 openApplication(applicationName, saveLastOpen)

The method openApplication opens an application.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] applicationName BSTR The name of the application to be opened.

[IN] saveLastOpen VARIANT_BOOL TRUE: if an application is open when openApplication is called it is saved.

FALSE: if an application is open when openApplication is called it is not
saved.

Remarks

Q.VITEC ActiveX Controls

39

If the application, which is open on calling this method, has to be saved and was not saved earlier, a new name for the
application is created. This name, e.g. „Application1.nav“, may not be unique. In this case, „Uqe“ is placed in front of
the name, e.g. creating „UqeApplication1.nav“, until the name will become unique. A warning containing the created
name is written into the error log file.

If openApplication returns, the opening of the application is already finished (or failed). This behaviour is in contrast to
the behaviour of the methods changeApplication and changeApplicationByName, which return although the changing
of the application is not finished yet. This difference is due to the fact that openApplication is a method of the setup
mode of Vision Q.400 and the synchronisation mechanism of Vision Q.400 does not work in setup mode.

If several clients are connected to Vision Q.400, and one client calls openApplication, all other clients receive the
signal VISIONQ400_SIG_APP_LOADED after Vision Q.400 has loaded the application. The client, which does call this
method, does not receive the signal VISIONQ400_SIG_APP_LOADED.

The opening of an application depends on the timeout value, which is set in Vision Q.400 in “Applications -> Vision
Q.400 Settings... -> Timeouts -> Application Change.” If the opening of an application takes longer than this timeout
value, the opening is stopped, the application to be loaded is closed, the method returns FALSE, and the signal
VISIONQ400_SIG_PCERROR is sent except to the client which called openApplication. If getState() is called in this case,
it will not return VISIONQ400_STATE_APPLICATION_LOAD.

The method openApplication fails in run mode.

Visual Basic Example

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim bSaveLastOpen As Boolean

Dim sErrorText As String

Dim sApplicationName As String

bSaveLastOpen = True

sApplicationName = _

"C:\Vision Q400\Applications\Application1.nav"

bReturn = _

 VisionQ400Control1.openApplication(_

 sApplicationName, bSaveLastOpen)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.2.6 saveApplicationAs(fileName)

The method saveApplicationAs will save the current application under the name fileName.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] filename BSTR The file name under which the current application will be saved.

Remarks

If saveApplicationAs returns, the saving of the application is already finished (or failed). This is due to the fact that
saveApplicationAs is a method of the setup mode of Vision Q.400 and the synchronisation mechanism of Vision Q.400
does not work in setup mode.

The saving of an application depends on the timeout value, which is set in Vision Q.400 in “Applications -> Vision
Q.400 Settings... -> Timeouts -> Application Change.” If the saving of an application takes longer than this timeout
value, the method returns immedeatly returning FALSE, even if the saving is not completed.

Q.VITEC ActiveX Controls

40

The method saveApplicationAs fails in run mode.

Visual Basic Example

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim sFileName As String

Dim sErrorText As String

sFileName = "C:\Test.nav"

bReturn = VisionQ400Control1.saveApplicationAs(sFileName)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.2.7 startApplication(groupNumber, lockGrab)

The method startApplication starts a new image grabbing and processing for the current application.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] groupNumber SHORT 0..255 The number of an execution group.

[IN] lockGrab VARIANT_BOOL Lock image grabbing.

Remarks

If groupNumber is 0, the whole application is started.

If groupNumber is greater than 0, and the execution group property “Allow group switching” is not activated, the
group number is ignored, and the group given under the execution group property ”Use always this group” is
executed. (Execution group matters are decribed in the Vision Q.400 reference manual in the chapter “Execution
Groups”.)

If lockGrab is FALSE, the image grabbing is not locked, that means new images are grabbed before starting the
processing.

If lockGrab is TRUE, the application is processed without image grabbing, that means, for the processing those images
are used, which were grabbed by the last call of startApplication with the parameter lockGrab being FALSE.

If the method returns TRUE, the processing of the application is started, but not finished. For synchronisation, you
have to set the sending and to wait for the appropriate signals. The sending of the approriate signals is set in Vision
Q.400 “Interfaces -> OLE”. The synchronization matters of Vision Q.400 are described in the Vision Q.400 reference
manual in the chapter “Interfaces -> Introduction”.

If the method returns FALSE, Vision Q.400 cannot accept a new start. This start is not delayed, but it is ignored. In this
case, you may call getState() to get the value VISIONQ400_STATE_START_WILL_FAIL, which signals that all further
calls of startApplication() will return FALSE until the cause of the failure will be removed by an approriate action.

If the method returns FALSE, the signal „Start Lost“ is sent to all Vision Q.400 interfaces, except to the client, which
called the method.

The method startApplication fails in setup mode.

Q.VITEC ActiveX Controls

41

Visual Basic Example

Private Sub Command3_Click() 'Call StartApplication()

Dim bReturn As Boolean

Dim bLockGrab As Boolean

Dim sErrorText As String

Dim iGroupNumber As Integer

iGroupNumber = 13

bLockGrab = False

bReturn = _

VisionQ400Control1.startApplication(_

iGroupNumber, bLockGrab)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.2.8 stopAutoRestart()

The method stopAutoRestart stops the automatic restarting of the current application.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument

none

Remarks

This method fails if Vision Q.400 is not in repetitive starting mode. The repetitiev starting mode is set in Vision Q.400
“Application -> Properties... -> Repetitive Start”.

The method stopAutoRestart fails in setup mode.

Visual Basic Example

Private Sub Command3_Click() 'Call StopAutoRestart

Dim bReturn As Boolean

Dim sErrorText As String

bReturn = VisionQ400Control1.stopAutoRestart()

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.2.9 setUserData(userDataName, userData)

The method setUserData allows to store user data in the currently loaded application. Different user data can be
stored under different user data names.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Q.VITEC ActiveX Controls

42

Argument Type Description

[IN] userDataName BSTR The user data name under which the current user data will be stored.

[IN] userData VARIANT The data to be stored. For the allowed VARIANT types see the remarks
section.

Remarks

The following VARIANT types are supported:

VT_EMPTY, VT_UI1, VT_UI2, VT_UI4, VT_I1, VT_I2, VT_I4, VT_R4, VT_R8, VT_UINT, VT_INT, VT_BOOL, and VT_BSTR.

For all supported VARIANT types (except of VT_EMPTY and VT_BSTR) , one or two dimensional arrays are allowed, too.
For VT_EMPTY array are not allowed, for VT_BSTR only one dimensional arrays are allowed.

If the given VARIANT type is VT_EMPTY, the user data stored under userDataName will be cleared.

If the given VARIANT type is VT_EMPTY, and userDataName contains “*” (an asterix), all user data will be cleared.

If data is already stored under userDataName, this old data will be overwritten by the data given in userData.

The empty string, a “*” (the asterix), and strings starting with a ‘@’ or not valid user data names.

2.2.10 getUserData(userDataName, userData)

The method getUserData allows to access user data, which is stored by a former call of setUserData() in the currently
loaded application. Different user data may be stored under different user data names.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] userDataName BSTR The data, which is stored under this user data name, will be returned.

[OUT] userData VARIANT* The returned user data.

Remarks

If the method returns VARIANT_ FALSE, the VARIANT to which userData points to, is empty.

Q.VITEC ActiveX Controls

43

2.3 Spreadsheet Methods

2.3.1 changeResultName(oldName, newName)

The method changeResultName changes the name of a result in the spreadsheet. (This name is shown in the “Result
name” column of the spreadsheet.)

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] oldName BSTR The name of the result which will be changed.

[IN] newName BSTR The new name of the result.

Remarks

If the spreadsheet is updated in the run mode, the new name is shown after the next call of startApplication.

It the name of a formula is changed and one of the formula editors is visible, the editors may not correctly be updated
to show the new name of the formula.

Visual Basic Example

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim sErrorText As String

Dim sOldName As String

Dim sNewName As String

sOldName = "WI[1;1]areaSize"

sNewName = "AreaSize"

bReturn = VisionQ400Control1. _

changeResultName(sOldName, sNewName)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.3.2 getDataCount()

The method getDataCount returns the number of entries (rows) in the “Selected Spreadsheet Cells” list of the OLE
interface. (To show this list in Vision Q.400, click on the OLE button of the spreadsheet.)

Return Value

LONG

The number entries (rows) in the “Selected Spreadsheet Cells” list of the OLE interface.

If an error occurs, the return value is –1. If this happens, you can call the methods getLastErrorText() (or
getLastErrorNumber()) for further information.

Argument

none

Q.VITEC ActiveX Controls

44

Visual Basic Example

Private Sub Command3_Click() 'Call GetDataCount()

Dim sErrorText As String

Dim vNamesOfSpreadColumn As Variant

Dim lDataCount As Long

lDataCount = VisionQ400Control1.getDataCount()

If lDataCount = -1 Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

Else

 Text1.Text = lDataCount

End If

End Sub

2.3.3 getDataColoumnName(entryAt)

The method getDataColoumnName returns the “Column” name of the row with the index entryAt in the “Selected
Spreadsheet Cells” list of the OLE interface. (To show this list in Vision Q.400, click on the OLE button of the
spreadsheet.)

The indices start with one.

Return Value

BSTR

The desired column name. If an error occurs, the empty string is returned. If this happens, you can call the method
getLastErrorText()(or getLastErrorNumber()) for further information.

Argument Type Description

[IN] entryAt LONG The index of the desired column name in the Selected Spreadsheet Cells list.

Visual Basic Example

Private Sub Command3_Click() 'Call GetDataColoumnName()

Dim sErrorText As String

Dim sResultName As String

Dim vNamesOfSpreadColumn As Variant

Dim lDataCount As Long

Dim lEntryAt As Long

List1.Clear

sResultName = VisionQ400Control1._

getDataColoumnName(lEntryAt)

If sResultName = "" Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

Else

 List1.AddItem (sResultName)

End If

End Sub

2.3.4 getDataResultName(entryAt)

The method getDataResultName returns the “Result Name” of the row with the index entryAt in the “Selected
Spreadsheet Cells” list of the OLE interface. (To show this list in Vision Q.400, click on the OLE button of the
spreadsheet.)

The indices start with one.

Q.VITEC ActiveX Controls

45

Return Value

BSTR

The desired result name. If an error occurs, the empty string is returned. If this happens, you can call the method
getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] entryAt LONG The index of the desired result name in the Selected Spreadsheet Cells list.

Visual Basic Example

Private Sub Command3_Click() 'Call GetDataResultName()

Dim sErrorText As String

Dim sResultName As String

Dim vNamesOfSpreadColumn As Variant

Dim lDataCount As Long

Dim lEntryAt As Long

List1.Clear

LEntryAt = 2 'Get the name of the second

'entry in the OLE interface

'list

sResultName = VisionQ400Control1._

getDataResultName(lEntryAt)

If sResultName = "" Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

Else

 List1.AddItem (sResultName)

End If

End Sub

2.3.5 getSpreadsheetColumnNames()

The method getSpreadsheetColumnNames returns the names of all spreadsheet columns.

Return Value

VARIANT

This VARIANT contains the list of column names in an one Dimensional SAFEARRAY of type BSTR. The size of the array
depends on the number of spreadsheet columns. The first entry in the array is the name of column one (the “Result
Name” column), the second the name of column two, and so on.

Argument

none

Remarks

The VARIANT is empty if the call of the method fails. If the VARIANT is empty, you can call the methods
getLastErrorText() (or getLastErrorNumber()) for further information.

Visual Basic Example

Q.VITEC ActiveX Controls

46

Private Sub Command3_Click()

'Call GetSpreadsheetColumnNames()

Dim sErrorText As String

Dim vNamesOfSpreadColumn As Variant

Dim lCounter As Long

vNamesOfSpreadColumn = VisionQ400Control1. _

 getSpreadsheetColumnNames()

If TypeName(vNamesOfSpreadColumn) = "Empty" Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

Else

 Text1.text = vNamesOfSpreadColumn(17)

'Text1.Text = Scans

'because the title of

'column number 17 is

'"Scans"

End If

End Sub

2.3.6 getSpreadsheetData (rowName, colName, dataType, data)

The method getSpreadsheetData gets the data shown in a spreadsheet data cell.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] rowName BSTR The name of the spreadsheet row

 for which the data is got.

[IN] colName BSTR The name of the spreadsheet column

 for which the data is got.

[IN] dataType SHORT The data type in which the data has to be returned.

[OUT] data VARIANT* A pointer to an user supplied VARIANT in which the data of the desired data type is
written.

Remarks

The parameter dataType can contain the following values:

Name Value Meaning

VISIONQ400_DATA_BOOLEAN 1 The data is returned as VT_BOOL

VISIONQ400_DATA_LONG 2 The data is returned as VT_I4

VISIONQ400_DATA_DOUBLE 4 The data is returned as VT_R8

VISIONQ400_DATA_STRING 8 The data is returned as VT_BSTR

The method getSpreadsheetData is not synchronised and it is not tested if the data to be returned is valid. For
example if Vision400 is processing while this method is called, the value of an earlier execution of Vision Q.400 may
be returned. Or if an error occurred during processing, a (not valid) value is returned nevertheless. The caller is
responsible for synchronisation and validation of the data.

For synchronised data access and data validation, the appropriate ActiveX events have to be used, e.g. the event
DataLongRecieved().

It is recommended to use getSpreadsheetData only for mostly “static” data, e.g. the lower and upper limits of a result.

Q.VITEC ActiveX Controls

47

Visual Basic Example

'Declaration of global variables

Option Explicit

Const VISIONQ400_DATA_BOOLEAN = 1

Const VISIONQ400_DATA_LONG = 2

Const VISIONQ400_DATA_DOUBLE = 4

Const VISIONQ400_DATA_STRING = 8

Private Sub Command3_Click() 'Call GetSpreadsheetData

Dim bReturn As Boolean

Dim sRowName As String

Dim sColName As String

Dim sErrorText As String

Dim iDataType As Integer

Dim vData As Variant

sRowName = "WI[1;1]areaSize"

sColName = "Lower Limit"

iDataType = VISIONQ400_DATA_DOUBLE

bReturn = VisionQ400Control1. _

 getSpreadsheetData(sRowName, sColName, iDataType, vData)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

Else

 Label7.Caption = vData

End If

End Sub

2.3.7 resetSpreadSheetStatistics()

The method resetSpreadSheetStatistics resets all spreadsheet statistics of the current application.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument

none

Visual Basic Example

Private Sub Command3_Click() 'Call resetSpreadSheetStatistics()

Dim bReturn As Boolean

Dim sErrorText As String

bReturn = VisionQ400Control1. _

resetSpreadsheetStatistics()

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.3.8 setCalibrationValue(attribName, valToSet)

The method setCalibrationValue changes the “Calibration” value of spreadsheet row with the “Result Name”
attribName to the value valToSet in the spreadsheet of the current application. (The behaviour is the same as if the
value is typed in in the appropriate spreadsheet cell.)

Return Value

VARIANT_BOOL

Q.VITEC ActiveX Controls

48

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] attribName BSTR The “Result Name” of a row in the spreadsheet.

[IN] valToSet DOUBLE The new value of the calibration value.

Remarks

It is not possible to set the calibration value of an If Case formula.

It is not possible to set the calibration value of a Boolean formula.

It is not possible to set the the calibration value of a string type checker result, e.g. the result of an OCR checker.

If the spreadsheet is updated in the run mode, the new value is shown after the next call of startApplication.

Visual Basic Example

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim sAttribName As String

Dim sErrorText As String

Dim dValToSet As Double

sAttribName = "WI[1;1]areaSize" 'e.g. change limit

 'of window checker result

dValToSet = 10

bReturn = VisionQ400Control1. _

 setCalibrationValue(sAttribName, dValToSet)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.3.9 setOcxReference(attribName, newRef)

The method setOcxReference sets the “String Reference” of the spreadsheet row with the “Result Name” attribName
to the value newRef.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] attribName BSTR The “Result Name” of a row in the spreadsheet.

[IN] newRef BSTR The new value of the string reference.

Remarks

It is only possible to set the string reference of a string type checker result, e.g. the result of an OCR checker.

If the spreadsheet is updated in the run mode, the new reference is shown after the next call of startApplication.

Q.VITEC ActiveX Controls

49

Visual Basic Example

Private Sub Command3_Click() 'Call SetOcxReference

Dim bReturn As Boolean

Dim sAttribName As String

Dim sErrorText As String

Dim sNewRef As String

sAttribName = "OCR[1;1]stringResult"

sNewRef = "ABCD1234"

bReturn = VisionQ400Control1. _

 setOcxReference(sAttribName, sNewRef)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.3.10 setSpreadSheetLimit(attribName, valToSet, upper)

The method setSpreadSheetLimit sets the “Upper / Lower Limit” of the spreadsheet row with the “Result Name”
attribName to the value valToSet in the spreadsheet of the current application.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] attribName BSTR The “Result Name” of a row in the spreadsheet.

[IN] valToSet DOUBLE The new value of the limit.

[IN] upper VARIANT_BOOL TRUE: the upper limit is set.

FALSE: the lower limit is set.

Remarks

It is not possible to set a new lower limit which is bigger then the current upper limit (or vice versa).

It is not possible to set a limit of an If Case formula.

It is not possible to set a limit of a Boolean formula.

It is not possible to set a limit of a string type checker result, e.g. the result of an OCR checker.

If the spreadsheet is updated in the run mode, the new limits are shown after the next call of startApplication.

Visual Basic Example

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim sAttribName As String

Dim sErrorText As String

Dim dValToSet As Double

Dim bUpper As Boolean

sAttribName = "WI[1;1]areaSize" 'e.g. change limit

 'of window checker result

bUpper = True 'TRUE: the upper limit is set

 'FALSE: the lower limit is set

dValToSet = 1000

bReturn = VisionQ400Control1. _

setSpreadsheetLimit(sAttribName, dValToSet, bUpper)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub



Q.VITEC ActiveX Controls

50

2.4 Image Methods

2.4.1 getImageSize(cameraNumber, numberOfCols, numberOfRows)

The method getImageSize returns the size of an image.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] cameraNumber SHORT [1..12] The camera number for which the image the size is returned.

[OUT] numberOfCols SHORT* . The number of columns of the image

[OUT] numberOfRows SHORT* The number of rows of the image.

Visual Basic Example

Private Sub Command3_Click() 'Call GetImageSize(. , . , .)

Dim bReturn As Boolean

Dim sErrorText As String

Dim iCameraNumber As Integer

Dim iNumberOfCols As Integer

Dim iNumberOfRows As Integer

iCameraNumber = Combo1.ListIndex + 1

bReturn = VisionQ400Control1.getImageSize(iCameraNumber, _

 iNumberOfCols, iNumberOfRows)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

Else

 Label1.Caption = iNumberOfCols

 Label2.Caption = iNumberOfRows

End If

End Sub

2.4.2 setSendImage(cameraNumber)

The method setSendImage enables the automatic transfer of the image of the camera cameraNumber from Vision
Q.400 to an OLE client by the event ImageAvaliable()., and it allows to access the image with the help of the method
getImage().

After calling setSendImage, the automatic transfer of the image is enabled, and the image is automatically transferred
at the end of every run mode execution of the current application.

The automatic transfer of the image can be switched off and on with the help of the property “SendImage” (see the
methods setProperty() and getProperty()), but the image can be accessed always by the method getImage().

The method enables the transferring and the access of the whole image.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] cameraNumber SHORT [1..12] The camera number for which the image is transferred or accessed.

Remarks

Q.VITEC ActiveX Controls

51

If you only want to transfer a part of the image, you have to use the method setSendImagePart() to enable the
transferring and the access of a part of the image.

If the image should be zoomed, , the functions setZoomImageScale() or setZoomImageSize() have to be called always
after calling setSendImage. (The call of setSendImage disables zooming.)

If the automatic transfer of the image should be switched off, the method setProperty() with the property
“SendImage” and the value FALSE has to be called always after calling setSendImage. (The call of setSendImage
enables the automatic transfer.)

If the camera cameraNumber is removed from the application , the image is not transferred and cannot be accessed
furthermore.

If you change your application, the camera cameraNumber may not belong to the new application, and the image is
not transferred and cannot be accessed furthermore.

If you change your application, the new image size (the size after changing the application) may be different from the
image size in effect when calling setSendImage, and the image is not transferred and cannot be accessed furthermore.
To overcame this behaviour, you have to call setSendImage again.

If the image is automatically transferred, you have to consider the following points:

- The image is only transferred in the run mode.

- To transfer the image, Vision Q.400 fires the event ImageAvaliable().

- If the camera cameraNumber does not belong to the currently executed execution group, the image of the
camera is not transferred. (Execution group matters are described in the Vision Q.400 reference manual in
the chapter “Execution Groups”.)

In all cases, an error message is written into Vision Q.400’s error log, and, if the image is automatically transferred,
the event ImageAvailable() is sent with a negative camera number.

2.4.3 setSendImagePart(cameraNumber, startPointX, startPointY, width, height)

The method setSendImagePart enables the automatic transfer of the image of the camera cameraNumber from
Vision Q.400 to an OLE client by the event ImageAvaliable()., and it allows to access the image with the help of the
method getImage().

After calling setSendImagePart, the automatic transfer of the image is enabled, and the image is automatically
transferred at the end of every run mode execution of the current application.

The automatic transfer of the image can be switched off and on with the help of the property “SendImage” (see the
methods setProperty() and getProperty()), but the image can be accessed always by the method getImage().

The method enables the transferring and the access of a part of the image.

Q.VITEC ActiveX Controls

52

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] cameraNumber SHORT [1..12] The camera number for which the image is transferred or accessed.

[IN] startPointX SHORT [> =0] X coordinate of the top left point of the part to transfer.

[IN] startPointY SHORT [> =0] Y coordinate of the top left point of the part to transfer.

[IN] width SHORT [> 0] Number of columns to transfer starting at startPointX.

[IN] height SHORT [> 0] Number rows to transfer starting at startPointY.

Remarks

If you want to transfer an other part of the image, you can call the method with other parameter values again.

If the transferred image part should be zoomed, , the functions setZoomImageScale()or setZoomImageSize() have to
be called always aftercalling setSendImagePart. (The call of setSendImagepart disables zooming.)

If the automatic transfer of the image should be switched off, the method setProperty() with the property
“SendImage” and the value FALSE has to be called always after calling setSendImage. (The call of setSendImage
enables the automatic transfer.)

If width is the number of columns of the image, and if height is the number of rows of the image, the method
setSendImagePart behaves like the method setSendImage(). (But if you want to transfer the whole image, you should
call the method setSendImage()).

If the camera cameraNumber is removed from the application , the image is not transferred and cannot be accessed
furthermore.

If you change your application, the camera cameraNumber may not belong to the new application, and the image is
not transferred and cannot be accessed furthermore.

If you change your application, the desired image part may not be totally inside the new image (the image after
changing the application), and the image is not transferred and cannot be accessed furthermore. To overcame this
behaviour, you have to call setSendImagePart again.

If the image is automatically transferred, you have to consider the following points:

- The image is only transferred in the run mode.

- To transfer the image, Vision Q.400 fires the event ImageAvaliable().

- If the camera cameraNumber does not belong to the currently executed execution group, the image of the
camera is not transferred. (Execution group matters are described in the Vision Q.400 reference manual in
the chapter “Execution Groups”.)

In all cases, an error message is written into Vision Q.400’s error log, and, if the image is automatically transferred,
the event ImageAvailable() is sent with a negative camera number.

2.4.4 setZoomImageScale(cameraNumber, scaleX, scaleY, interpolaition)

The method setZoomImageScale enables the zooming of the transferred of image (part) of the camera
cameraNumber.

You have to call setSendImage() or setSendImagePart() before you can call setZoomImageScale.

Q.VITEC ActiveX Controls

53

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] cameraNumber SHORT [1..12] The camera number for which the transferred image (part) is
zoomed.

[IN] scaleX DOUBLE [0.1..5.0] Zoom factor in x direction.

[IN] scaleY DOUBLE [0.1..5.0] Zoom factor in y direction.

[IN] interpolation SHORT [0..1] Interpolation method for the zooming.

Remarks

If you want to change the values for the zooming, you can call the method with other parameter values again.

The parameter scaleX zooms the number of transferred columns into the range given by this parameter. E.g. if 100
columns of the image has to be transferred, and scaleX is 2.0, these 100 columns are zoomed into 200 columns. Or if
scaleX is 0.5, these 100 columns are zoomed into 50 columns.

The parameter scaleY behaves the same for the transferred rows.

The parameter interpolation sets the method used for the zooming:

0: no interpolation, the grey values are skipped or doubled. This method is vary fast, but may be inaccurate.

1: an interpolation method is used. This method has a higher run time and a higher quality.

If the zooming is used Vision Q.400 adapts the number of transferred columns and rows set by setSendImage() or
setSendImagePart() to the number needed after the zooming. You can get these new values by calling the method
getProperty() with it’s name parameter set to “TransferredImage”.

2.4.5 setZoomImageSize(cameraNumber, width, height, interpolaition)

The method setZoomImageSize enables the zooming of the transferred of image (part) of the camera cameraNumber.

You have to call setSendImage() or setSendImagePart() before you can call setZoomImageSize.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] cameraNumber SHORT [1..12] The camera number for which the transferred image (part) is zoomed.

[IN] width SHORT [> 10] Number of columns to be zoomed in (upper limit see Remarks).

[IN] height SHORT [> 10] Number of rows to be zoomed in (upper limit see Remarks).

[IN] interpolation SHORT [0..1] Interpolation method for the zooming.

Remarks

If you want to change the values for the zooming, you can call the method with other parameter values again.

Q.VITEC ActiveX Controls

54

The parameter width zooms the number of transferred columns into the range given by this parameter. E.g. if 100
columns of the image has to be transferred, and width is 200, these 100 columns are zoomed into 200 columns. Or if
width is 50, these 100 columns are zoomed into 50 columns.

The upper limit of width is five times the width (the number of columns) of the image to be transferred.

The parameter height behaves the same for the transferred rows.

The parameter interpolation sets the method used for the zooming:

0: no interpolation, the grey values are skipped or doubled. This method is vary fast, but may be inaccurate.

1: an interpolation method is used. This method has a higher run time and a higher quality.

If the zooming is used Vision Q.400 adapts the number of transferred columns and rows set by setSendImage() or
setSendImagePart() to the number needed after the zooming. You can get these new values by calling the method
getProperty() with it’s name parameter set to “TransferredImage”.

2.4.6 getImage(cameraNumber)

With the method getImage the image of the camera cameraNumber can be accessed.

The method returns the last grabbed image of the camera.

In the run mode, the method fails if the grabbing of the accessed image is not finished yet.

In the setup mode, it is not tested if the grabbing of the accessed image is finished. Therefore if a grab of the camera
occurs while this method is called, the returned image may be partly destroyed.

Return Value

VARIANT

The method returns an empty VARIANT if it fails. In this case, you can call the methods

getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] cameraNumber SHORT [1..12] The camera number for which the image is accessed.

Remarks

The method getImage can only be called if the access of an image is enabled by the methods setSendImage() or
setSendImagePart().

If one of the methods setZoomImageScale()or setZoomImageSize() has been called, the returned image is
appropriately zoomed.

The safe array in the VARIANT image can have one or two dimensions. (The dimension of the safe array can be
changed by a call of the method setProperty() with the parameter name set to “ImageBufferDim”.)

If the safe array has one dimension, it’s lower bound is always 0, and it’s upper bound is the number of columns
multiplied with the number of minus 1. This means that the number of columns and the number of rows have to be
known otherwise, e.g. by a call to the method getProperty() with it’s name set to “TransferredImage”.

If the safe array has two dimensions, the bounds of the first array dimension describe the columns, and the bounds of
the second array dimension describe the rows of the image which are transferred. E.g. if the bounds of the first array
dimension are [10, 90] and the bounds of the second dimension are [110, 190], only the image columns from 10 to 90
and the image rows from 100 to 190 are written. The desired image part must be totally inside the image. E.g. if the
image has 512 columns, and the bounds of the first Dimension are [100, 550], an error is returned.

Q.VITEC ActiveX Controls

55

If the whole image is transferred, the lower bounds of the two array dimensions are always 0, and, without zooming,
the upper bounds are the number of columns – 1 of the image, and the number of rows – 1 of the image, respectively.

If the transferred image (part) is zoomed, the upper bounds of the array dimensions may not be the values set by
setSendImage() or setSendImagePart(): Vision Q.400 adapts the upper bounds to the values needed after the
zooming. The lower bounds are left unchanged.

If the application has changed, and there was no grab with the current application, the image which was grabbed by
the old application is returned.

2.4.7 removeSendImage(cameraNumber)

The method removeSendImage disables the automatic transfer of the image of the camera cameraNumber from
Vision Q.400 to an OLE client: the image is not transferred furthermore.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] cameraNumber SHORT [1..12] The camera number for which the transferred image is removed.

Visual Basic Example
Private Sub Command3_Click() 'Call RemoveImage()

Dim bReturn As Boolean

Dim sErrorText As String

Dim iCameraNumber As Integer

iCameraNumber = Combo3.ListIndex + 1

bReturn = VisionQ400Control1.removeSendImage(iCameraNumber)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.4.8 loadCameraImage(cameraNumber, fileName)

The method loadCameraImage loads an image for a selected camera of the Vision Q.400.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] cameraNumber SHORT [1..12] The camera number for which the image is loaded.

[IN] fileName BSTR The name of the file, which contains a 8 bit grey value bitmap.

Remarks

The method returns FALSE if the given file does not contain a valid 8 bit grey value bitmap.

If you want to apply the current checkers to the loaded image you have to avoid a new grab when executing a new
start. Please refer to: startApplication()

Q.VITEC ActiveX Controls

56

If the camera cameraNumber is in live mode, it will be set to memory mode before the image will be loaded.

This function only works if the Vision Q.400 is in setup mode.

Visual Basic Example

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim sErrorText As String

Dim iCameraNumber As Integer

Dim sFileName As String

iCameraNumber = 1

sFileName = "C:\Temp\TestImage.bmp"

bReturn = VisionQ400Control1.loadCameraImage(iCameraNumber, sFileName)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

2.4.9 saveCameraImage(cameraNumber, fileName)

The method saveCameraImage is called to save the image of the selected camera to a bitmap file.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeeds, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] cameraNumber SHORT [1..12] The camera number for which the image is written.

[IN] fileName BSTR The name of the file, which contains a 8 bit grey value bitmap.

Remarks

If the camera cameraNumber is in live mode, it will be set to memory mode before the image will be saved.

This function only works if the Vision Q.400 is in setup mode.

Visual Basic Example

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim sErrorText As String

Dim iCameraNumber As Integer

Dim sFileName As String

iCameraNumber = 1

sFileName = "C:\Temp\ImageCam1.bmp"

bReturn = VisionQ400Control1.saveCameraImage(iCameraNumber, sFileName)

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

Q.VITEC ActiveX Controls

57

2.5 Error Handling Methods

2.5.1 getLastErrorNumber()

The method getLastErrorNumber returns the number of the last error.

Return Value

LONG

The number of the last error, or if no error occurred, 0.

Argument

none

Remarks

You have to call this method immediately after an error occurred, otherwise a wrong (newer) error number may be
returned.

This method has to be called before getLastErrorText, because getLastErrorText may clear the error number, but
getLastErrorNumber does not.

Normally the explaining text got by getLastErrorText may be enough information, but sometimes the error number
may be needed, e.g. if no application is loaded and the client wants to handle this situation. In this case, it is an good
idea to get the error number first, to handle some of the numbers, and to call getLastErrorText for the not handled
errors afterwards.

Important error numbers:

Value Meaning

6606 No application is loaded

6655 The judgement of a result is “ERROR”.

Visual Basic Example

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim lErrorNumber As Long

'bReturn = VisionQ400Control1.__ 'Call of any Vision

'Q.400 methode

If bReturn = False Then

lErrorNumber = VisionQ400Control1.getLastErrorNumber()

Select Case lErrorNumber

Case 6000

 MsgBox ("Vision Q.400 is not connected.")

Case Else

End Select

End If

End Sub

2.5.2 getLastErrorText()

The method getLastErrorText returns an explaining text for the last error.

Return Value

BSTR

The explaining text of the last error, or if no error occurred, the empty string.

Argument

Q.VITEC ActiveX Controls

58

none

Remarks

You have to call this method immediately after an error occurred, otherwise the wrong (newer) error text may be
returned.

This method may clear the error text on calling.

Visual Basic Example

Private Sub Command3_Click()

Dim bReturn As Boolean

Dim sErrorText As String

'bReturn = VisionQ400Control1.__ 'Call of any Vision

'Q.400 methode

If bReturn = False Then

 sErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

Q.VITEC ActiveX Controls

59

2.6 getParameter(checkerName, parameterName)

The method getParameter returns the current value(s) of a checker parameter.

Return

VARIANT

For the current type and meaning of this VARIANT please refer the description of the concerning parameter.

The method returns an empty VARIANT if it fails. In this case, you can call the methods

getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] checkerName BSTR “ActiveX Name” of the checker e.g. "WI[1;1]".

[IN] parameterName BSTR Name of the current parameter e.g. "Custom Slice Level".

Remarks

The “ActiveX Name” of an checker can be seen and changed on the checker’s general property page.

Visual Basic Example

The first example shows how to handle the ValueOfParameter if the received value is a single value. When we aim to
get the value of the parameter e.g. Dynamic Slice Level the return value will be a data array where the upper and the
lower limit will be stored. If we are trying to get the parameter value of the parameter Dynamic Slice Level Filter Size
we will receive a single value which shows the filter size.

Example 1:

Private Sub Command3_Click()

Dim sObjectName As String

Dim sParameterName As String

Dim vValueOfParameter As Variant

Dim sErrorText As String

Dim iReturn As Integer

sObjectName = “WI[1;1]”

sParameterName = “Dynamic Slice Level Filter Size”

vValueOfParameter = VisionQ400Control1. _

 GetParameter(sObjectName, sParameterName)

sErrorText = VisionQ400Control1.getLastErrorText()

If sErrorText <> "" Then

 MsgBox (sErrorText)

Else

 iReturn = Cint(vValueOfParameter)

End If

End Sub

Example 2:

Private Sub Command3_Click()

Dim sObjectName As String

Dim sParameterName As String

Dim vValueOfParameter As Variant

Dim sErrorText As String

Dim iReturn1 As Integer

Dim iReturn2 As Integer

sObjectName = “WI[1;1]”

sParameterName = “Dynamic Slice Level”

vValueOfParameter = VisionQ400Control1. _

 GetParameter(sObjectName, sParameterName)

sErrorText = VisionQ400Control1.getLastErrorText()

If sErrorText <> "" Then

 MsgBox (sErrorText)

Else

 iReturn1 = CInt(vValueOfParameter(0))

 iReturn2 = CInt(vValueOfParameter(1))

End If

End Sub

Q.VITEC ActiveX Controls

60

2.6.1 Checker

2.6.1.1 Common Parameters

The parameters, which are described here, are used by different checkers.

Parameter Name Returned VARIANT Type Comment

<The empty string> VT_BSTR and VT_ARRAY Returns the list of the names of all parameters, which are
supported by the checker.

If the checker does not support any parameters, the
returned array contains one entry, the empty string.

Enable Execution VT_BOOL

-1 and 1 as ON,

 0 as OFF

Returns if the execution of the checker is currently
enabled (ON), or disabled (OFF).

Depends From

Direct

VT_BSTR and VT_ARRAY

Returns the list of checker names, from which the
checker checkerName directly depends. That means if
one of the checkers in the list does depend on other
checkers, these checkers are not in the list.

If no checker is found, the returned array contains one
entry, the empty string.

Depends From

VT_BSTR and VT_ARRAY

Returns the list of all checker names, from which the
checker checkerName depends. If one of the checkers in
the list does depend on other checkers in the list, it is
inserted behind the checkers it depends from.

If no checker is found, the returned array contains one
entry, the empty string.

2.6.1.1.1 Thresholding

Parameter Name Returned VARIANT Type Comment

Custom Slice Level VT_BOOL

-1 and 1 as ON,

 0 as OFF

Gets the current custom slice level setting.

Dynamic Slice Level VT_I2 and VT_ARRAY

 (one Dimensional, two
values)

[0]: LowerLimit

[1]: UpperLimit

Gets the current limits of the dynamic slice level

It is not possible to access to this parameter if the static
slice level is active.

Dynamic Slice Level
Filter Size

VT_I2 Gets the filter current size of the dynamic slice level.

It is not possible to access to this parameter if the static
slice level is active.

Static Slice Level VT_UI1 and VT_ARRAY

 (one Dimensional, two
values)

[0]: LowerLimit

[1]: UpperLimit

Gets the current limits of the static slice level.

It is not possible to access to this parameter if the
dynamic slice level is active.

Use Static Slice Level VT_BOOL

-1 and 1 as Static Slice Level,

 0 as Dynamic Slice Level

Gets the current static slice level setting.

Q.VITEC ActiveX Controls

61

2.6.1.1.2 Image Filters

The placeholder Filter Name in the following table can consist of:

- An image filter name, e.g. “Closing”

- An image filter name.

If different image filters with the same name have to be distinguished in the image filter list, the name has to
be modified by an index: name[Index]. The index starts with 1. E.g “Closing[2]” means the second closing
filter in the list.

The placeholder Parameter Name in the following table can consist of:

- a parameter name, e.g. “Filter Size”

Parameter Name Returned VARIANT Type Comment

Image Filter Gray List VT_BSTR and VT_ARRAY The list of gray
filters currently
selected for the
checker.

If the requested list is empty, the
returned array contains one
entry, the empty string.

Image Filter Binary
List

The list of binary
filters currently
selected for the
checker.

Image Filter Gray
<Filter Name ,
Parameters>

VT_BSTR and VT_ARRAY The names of all parameters of the image filter Filter
Name .

If the image filter does not have parameters, the
returned array contains one entry, the empty string.

To get the parameter names of an image filter, this
filter has to be currently selected for the checker.

Image Filter Binary
<Filter Name,
Parameters>

Image Filter Gray
<Filter Name,
Parameter Name >

Depends on the requested
parameter. If an enumeration
parameter is requested, the
current enumeration value is
returned as VT_BSTR.

Current value of the requested parameter.

Image Filter Binary
<Filter Name,
Parameter Name >

Image Filter Gray
<Filter Name,
Parameter Name
All>

VT_BSTR and VT_ARRAY Only available for enumeration parameters.

All possible values of the enumeration parameter
Parameter Name of the image filter Filter Name .

To get the values the Image filter filter Filter Name has
to be currently selected for the checker.

Image Filter Binary

<Filter Name,
Parameter Name
All>

2.6.1.2 Window Checker

Q.VITEC ActiveX Controls

62

Parameter Name Returned VARIANT
Type

Comment

Thresholding All parameters described in Thresholding

Uses Image Filter
Dll

VT_BOOL If the return value is true, a customized image filter dll is used, false if
not.

Image Filters All parameters described in Image Filters

2.6.1.3 Feature Extraction Checker

Parameter Name Returned VARIANT Type Comment

Advanced Object
Selection

VT_BOOL If the return value is true, advanced object selection is used.

Advanced Object
Selection
Formula

VT_BSTR The return value is the formula string used for the advanced
object selection.

Boundary VT_BOOL If the return value is true, "Area Boundary" is set ON, false it is
set OFF.

Thresholding All parameters described in Thresholding

Uses Image Filter
Dll

VT_BOOL If the return value is true, a customized image filter dll is used,
false if not.

Image Filters All parameters described in Image Filters

2.6.1.4 Binary Edge Detection Checker

Parameter Name Returned VARIANT Type Comment

Width VT_I4

The return value is the current “Width” setting of a binary edge
detection checker.

The edge width value is in the data range between 1 and 701.

Depth VT_I4

The return value is the current “Depth” setting of a binary edge
detection checker.

The edge depth value is in the data range between 1 and 701.

Thresholding All parameters described in Thresholding

Uses Image Filter Dll VT_BOOL If the return value is true, a customized image filter dll is used,
false if not.

Image Filters All parameters described in Image Filters

2.6.1.5 Gray Edge Detection Checker

Parameter Name Returned VARIANT Type Comment

Maximal Edge Width VT_I4

The return value is the current minimum edge width
of the gray edge detection checker.

This Parameter is only available if the checker shape is
a rectangle and if the edge type "connected" is
selected.

Minimum Edge
Length

VT_I4

The return value is the current minimum edge length
of the gray edge detection checker.

Minimum Gradient VT_I4 The return value is the current minimum gradient of
the gray edge detection checker.

Q.VITEC ActiveX Controls

63

2.6.1.6 Difference Checker

Parameter Name Returned VARIANT Type Comment

Accuracy VT_BSTR

The return string is the current
accuracy setting: "high", "medium"
or "standard".

Gets the current setting of checker accuracy.

Template Rotation VT_R8 and VT_ARRAY

(one Dimensional, three values)

[0] double Min Angle

[1] double Max Angle

[2] double Delta Angle

Gets the values for the pre-rotation of the
template.

Min Angle and Max Angle is between -180° and
360°. Maximum difference is 360°.

Slice Level VT_I2 and VT_ARRAY

 (one dimensional, two values)

[0]: short LowerLimit

[1]: short UpperLimit

Gets the slice level settings of the checker.

The limits are in the range between -254 and 254.

Selected Range VT_BOOL

If the return value is TRUE "Process Selected
Range" is active.

If the return value is FALSE "Process not Selected
Range" is active.

Uses Image Filter Dll VT_BOOL If the return value is true, a customized image
filter dll is used, false if not.

Binary Image Filters All binary parameters described in Image Filters

2.6.1.7 Contour Matching

Parameter Name Returned VARIANT Type Comment

Use Scale VT_I4

If the return value is true, "Model Type" is set
correctly.

0 = Standard

1 = Scale

2 = Anisotrope

Search Method VT_R8

The return value is the current setting of the
parameter “Search Method”

Maximum Overlap VT_R8 The return value is the current setting of the
parameter “Maximum Overlap”.

Angle Range VT_R8 and VT_ARRAY

(one Dimensional, two values)

[0] double Start Angle

[1] double Angle Range

This parameter retrieves the start angle, the angle
extend of the checker.

Sample: The result: Start: -30 Angle Extend: 60
means

an angle range from -30 to 30 degrees.

Scale Range VT_R8 and VT_ARRAY (one
Dimensional, two values)

[0] double MinScale

[1] double MaxScale

Gets the current setting of the parameter “Scale
Range”.

Scale Range Column [VT_R8 and VT_ARRAY

 0: Min Factor [0.1 .. 5.0]

 1: Max Factor [0.1 .. 5.0]

Gets the current setting of the parameter “Scale
Range Column” for ansiotrope scaling.

Q.VITEC ActiveX Controls

64

Parameter Name Returned VARIANT Type Comment

Object Appearance VT_I4

This parameter retrieves the object appearance
setting of the checker.

0 = like template

1 = like template or inverted

2 = dynamic

Minimum
Correlation

VT_R8

Gets the current setting of the parameter
“Minimum Correlation”.

Number Of Matches VT_I4

Gets the current setting of the parameter number
of matches.

Minimum Inspection
Contrast

VT_I4

Gets the current setting of the parameter
“Minimum Inspection Contrast” of the checker.
(Former name of this parameter: "Minimum
Contrast")

Maximum Model
Contrast

VT_I4

Gets the current setting of the parameter
“Maximum Model Contrast” of the checker.

Minimum Model

Contrast

VT_I4

Gets the current setting of the parameter
“Minimum Model Contrast” of the checker.

(Former name of this parameter: "Contrast")

Last Level VT_I4

Gets the current setting of the parameter “Last
Compression Level”.

Sequences VT_I4

Gets the current setting of the parameter
“Compression Levels”

Area Boundary VT_BOOL

If the return value is true, "Area Boundary" is set
ON, if false it is set OFF.

Accuracy VT_I4

Gets the current setting of the parameter
“Accuracy”

Minimum
Component Size

VT_I4

Gets the current setting of the parameter
“Minimum Component Size” of the checker.

Optimize Large
Models

VT_I4

Gets the current setting of the parameter
“Optimize Large Models” of the checker.

Output Point VT_BOOL

If the return value is true, " Output Point " is set to
the center of the model, if false it is set to the
center oft the template area.

Pregenerate Model VT_BOOL

If the return value is true, " Pregenerate Model " is
set ON, if false it is set OFF.

Maximal Allowed
Deformation

VT_I4

Gets the current setting of the parameter
“Maximal Allowed Deformation”.

Reference Point [VT_R8 and VT_ARRAY

 0: MinScale [0.0 .. 5000.0]

 1: MaxScale [0.0 .. 5000.0]

Get the reference point of the checker.

2.6.1.8 Correlation Matching

Parameter Name Returned VARIANT Type Comment

Maximum Overlap VT_R8 The return value is the current setting of the
parameter “Maximum Overlap”.

Angle Range VT_R8 and VT_ARRAY

(one Dimensional, two values)

[0] double Start Angle

[1] double Angle Range

This parameter retrieves the start angle, the angle
extend of the checker.

Sample: The result: Start: -30 Angle Extend: 60
means

an angle range from -30 to 30 degrees.

Q.VITEC ActiveX Controls

65

Parameter Name Returned VARIANT Type Comment

Object Appearance VT_I4

This parameter retrieves the object appearance
setting of the checker.

0 = like template

1 = like template or inverted

Minimum
Correlation

VT_R8

Gets the current setting of the parameter
“Minimum Correlation”.

Number Of Matches VT_I4

Gets the current setting of the parameter number
of matches.

Minimum Inspection
Contrast

VT_I4

Gets the current setting of the parameter
“Minimum Inspection Contrast” of the checker.
(Former name of this parameter: "Minimum
Contrast")

Last Level VT_I4

Gets the current setting of the parameter “Last
Compression Level”.

Sequences VT_I4

Gets the current setting of the parameter
“Compression Levels”

Area Boundary VT_BOOL

If the return value is true, "Area Boundary" is set
ON, if false it is set OFF.

Accuracy VT_I4

Gets the current setting of the parameter
“Accuracy”

2.6.1.9 OCR Checker

Parameter Name Returned VARIANT Type Comment

Use Classifier VT_BOOL If the return value is true, "Use Classifier" is set ON,
if false it is set OFF.

Classifier Name BSTR

Gets the name of the classifier of the selected
checker.

Correlation Threshold VT_I4

Gets the current “Correlation Threshold” setting of
the checker.

Thresholding All parameters described in Thresholding

Uses Image Filter Dll VT_BOOL If the return value is true, a customized image filter
dll is used, false if not.

Image Filters All parameters described in Image Filters

Q.VITEC ActiveX Controls

66

2.6.1.10 Code Reader

Parameter Name Returned VARIANT Type Comment

Code Type VT_BSTR Gets the current “Code Type” setting of the checker.

Number Of Codes VT_I4 Gets the current “Number of Codes” setting of the
checker.

Number Of Loops VT_I4

Gets the current “Number of Search Loops” setting of
the checker.

This setting is only valid for 2D code types.

Model Parameter Mode VT_I4 Gets the current “Code Model Parameter” setting of
the checker.

Pharma Code Reverse VT_BOOL If the return value is true, a pharma code is read in
reverse direction, if false not.

Check Digit VT_BOOL Gets the current “Check Digit” setting of the checker.

2D Code Model Parameters – Only valid in “Manual” mode

Min Contrast 2D VT_I4 Gets the current “Minimal Contrast” setting of the
checker.

Max Angle Variation
ECC200 2D

VT_R8

Gets the current “Maximal Angle Variation” setting of
the checker.

This parameter is only valid for the ECC200 code.

Min Symbol Col 2D VT_I4

Gets the current “Minimal Symbol Columns” /
“Maximal Symbol Columns” setting of the checker. Max Symbol Col 2D

Min Symbol Row 2D VT_I4 Gets the current “Minimal Symbol Rows” / “Maximal
Symbol Rows” setting of the checker. Max Symbol Row 2D

Symbol Shape 2D VT_BSTR Gets the current “Symbol Shape” setting of the
checker.

Mirrored 2D VT_BSTR Gets the current “Mirrored” setting of the checker.

Polarity 2D VT_BSTR Gets the current “Polarity” setting of the checker.

Module Size Min 2D VT_I4 Gets the current “Minimal Module Size” / “Maximal
Module Size” setting of the checker. Module Size Max 2D

Module Gap Col Max 2D VT_BSTR

Gets the current “Minimal Module Gap” / “Maximal
Module Gap” setting of the checker. Module Gap Col Min 2D

Module Gap Row Max 2D VT_BSTR

Gets the current “Minimal Module Gap Row” /
“Maximal Module Gap Row” setting of the checker. Module Gap Row Min 2D

Model Type QR 2D VT_BSTR

Gets the current “QR Model Type” setting of the
checker.

This parameter is only valid for the QR code.

Version Min QR 2D VT_I4

Gets the current “Minimal Symbol Version” / Maximal
Symbol Version” setting of the checker.

This parameter is only valid for the QR code.
Version Max QR 2D

Persistance 2D VT_I4 Gets the current “Persistence” setting of the checker.

Strict Model 2D VT_BSTR Gets the current “Strict Model” setting of the checker.

Small Module Robustness VT_BSTR Gets the current “Small Module Robustness” setting of
the checker.

Module Width Max PDF417
2D

VT_I4

Gets the current “Module Width Max” / Module Width
Min” setting of the checker.

This parameter is only valid for the PDF417 code. Module Width Min PDF417
2D

Pattern Position Min QR 2D VT_I4 Gets the current “Position Pattern Min” setting of the
checker.

Module Aspect Min PDF417
2D

VT_I4 Gets the current “Module Aspect Max” / Module Aspect
Min” setting of the checker.

This parameter is only valid for the PDF417 code. Module Aspect Max PDF417

Q.VITEC ActiveX Controls

67

2D

1D Code Model Parameters – Only valid in “Manual” mode

Gray Image Filters All gray parameters described in Image Filters

Min Size Element 1D VT_R8 Gets the current value of the parameter “Minimal
Element Size”.

Max Size Element 1D VT_R8 Gets the current value of the parameter “Maximal
Element Size”.

Min Element Height 1D VT_I4 Gets the current value of the parameter “Minimum
Element Height”.

Angle Range 1D VT_I4 Gets the current value of the parameter “Angle Range”.

Measure Threshold 1D VT_R8 Gets the current value of the parameter “Segmentation
Threshold”.

Orientation 1D VT_R8 Gets the current value of the parameter “Element
Orientation”.

Orientation Tolerance 1D VT_R8 Gets the current value of the parameter “Element
Orientation Tolerance”.

Composite Code 1D VT_BSTR Gets the current value of the parameter “1D Composite
Code”.

2.6.1.11 Edge Detection Gray Value Projection

Parameter Name Returned VARIANT Type Comment

Transition VT_I4 Gets the current “Edge Transition” setting of the
checker.

All = 0

Dark - Light = 1

Light – Dark = 2

Select Edges VT_I4 Gets the current “Edge Selection” setting of the checker.

 All = 0

 First = 1

 Last = 2

 First - Last = 3

 Maximum Gradient = 4

Execution Mode VT_I4

Gets the current “Execution Mode” setting of the
checker.

Edge Pairs = 0,

Edge Position = 1

Gradient VT_I4 Gets the current “Minimal Gradient” setting of the
checker.

Noise Level VT_I4 Gets the current “Noise Level” setting of the checker.

Number Of Edges VT_I4 Gets the current “Number of edges” setting of the
checker.

Gray Image Filters All gray parameters described in Image Filters

2.6.1.12 Identifier Checker

Parameter Name Returned VARIANT Type Comment

All Sample Images
Directories

VT_BSTR and VT_ARRAY. The currently available sample images directories.

If a sample image directory is not available, the returned
array contains one entry, the empty string.

Sample Images Directory VT_BSTR The currently selected sample images directory.

Q.VITEC ActiveX Controls

68

Parameter Name Returned VARIANT Type Comment

If a sample image directory is not selected, “None” is
returned.

Use Color Information VT_BOOL

-1 and 1 as “is used”

 0 as “is not used”

Gets the current “Use Color Information” setting of the
checker

Image Resize Method VT_BSTR Gets the current “Image Resize Method” setting of the
checker.

Resulting Image Size VT_R8 Gets the current “Resulting Image Size” setting of the
checker.

Can only be got if the “Image Resize Method” is set to
“Resulting Image Size”.

Scaling Factor VT_R8 Gets the current “Scaling Factor” setting of the checker.

Can only be got if the “Image Resize Method” is set to
“Scaling Factor”.

Subsampling Step VT_R8 Gets the current “Subsampling Step” setting of the
checker.

Can only be got if the “Image Resize Method” is set to
“Subsampling Step”.

Maximum Number of Result VT_I4 Gets the current “Maximum Nuber Of Results” setting
of the checker.

Rating Method VT_BSTR Gets the current “Rating Method” setting of the
checker.

Rating Threshold VT_R8 Gets the current “Rating Threshold” setting of the
checker.

2.6.2 Shapes

If you change some shape parameters by calling the method setParameter, all other shape parameters may be
changed implicitly, too. E.g. if you change the center point of a shape, all other shape points are moved, too. You can
get the changed values by calling the method getParameter. (You can test the behaving of setParameter by changing
some parameters in a checkers shape property page.)

The method setParameter fails if only one of the (implicitly) changed parameters lays outside it’ s range, e.g. all
changed image points have to lay inside the image.

Some checkers, e.g. the Contour Mactching checker, have more than one shape. Please refer to the appropriate
checker description for details.

Visual Basic Example

The first example shows how to get shape parameters from a checker and the second example shows how to set
shape parameters.

Q.VITEC ActiveX Controls

69

Example 1:

Private Sub Command3_Click()

Dim sObjectName As String

Dim sParameterName As String

Dim vShapeParameter As Variant

Dim lStartEdge_X As Long

Dim lStartEdge_Y As Long

Dim lEndEdge_X As Long

Dim lEndEdge_Y As Long

sObjectName = “WI[1;1]” 'Rectangle Shape

sParameterName = "Shape Points"

vShapeParameter = VisionQ400Control1. _

GetParameter (sObjectName, sParameterName)

If TypeName(vShapeParameter) = "Empty" Then

 MsgBox (VisionQ400Control1.getLastErrorText)

Else

 lStartEdge_X = vShapeParameter(0, 0)

 lStartEdge_Y = vShapeParameter(0, 1)

 lEndEdge_X = vShapeParameter(1, 0)

 lEndEdge_Y = vShapeParameter(1, 1)

End If

End Sub

Example 2:

Dim sObjectName As String

Dim sParameterName As String

Dim lStartEdge_X As Long

Dim lStartEdge_Y As Long

Dim lEndEdge_X As Long

Dim lEndEdge_Y As Long

Dim lShapeParameter(0 To 2, 0 To 1) As Long

Dim lEdge_1_X As Long

Dim lEdge_1_Y As Long

Dim lEdge_2_X As Long

Dim lEdge_2_Y As Long

Dim lEdge_3_X As Long

Dim lEdge_3_Y As Long

lEdge_1_X = 1

lEdge_1_Y = 1

lEdge_2_X = 500

lEdge_2_Y = 1

lEdge_3_X = 250

lEdge_3_Y = 400

lShapeParameter(0, 0) = lEdge_1_X

lShapeParameter(0, 1) = lEdge_1_Y

lShapeParameter(1, 0) = lEdge_2_X

lShapeParameter(1, 1) = lEdge_2_Y

lShapeParameter(2, 0) = lEdge_3_X

lShapeParameter(2, 1) = lEdge_3_Y

sObjectName = "WI[1;1]" 'Poligon Shape with 3 Points

sParameterName = "Shape Points"

bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, vShapeParameter)

If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

End If

End Sub

2.6.2.1 Common Parameters

The parameters described in the following table are used by all shapes.

Parameter Name Returned VARIANT Type Comment

Shape Type VT_I4 The type of the shape:

0x00: Rectangle

0x01: Ellipse (Circle)

0x03: Polygon

0x07: Doughnut

Q.VITEC ActiveX Controls

70

0x0A: Object Shape

0x10: Rectangle ->

0x11: Ellipse -> (Circle ->)

0x12: Line ->

0x13: Doughnut ->

2.6.2.2 Shape Line ->

Parameter Name Returned VARIANT Type Comment

Shape Points VT_I4 | VT_ARRAY

2 Points

Point 1: Start Point

Point 2: End Point

Shape Start Point VT_I4 | VT_ARRAY

1 Point

Start Point

Shape End Point VT_I4 | VT_ARRAY

1 Point

End Point

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Shape Direction VT_R4 Angle of the line

Range: 0 <= angle <= 360

Visual Basic Example: Shape Points

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim vShapeParameter(0 To 1, 0 To 1) As Long

 Dim lStartEdge_X As Long

 Dim lStartEdge_Y As Long

 Dim lEndEdge_X As Long

 Dim lEndEdge_Y As Long

 lStartEdge_X = 5

 lStartEdge_Y = 5

 lEndEdge_X = 400

 lEndEdge_Y = 400

 vShapeParameter(0, 0) = lStartEdge_X

 vShapeParameter(0, 1) = lStartEdge_Y

 vShapeParameter(1, 0) = lEndEdge_X

 vShapeParameter(1, 1) = lEndEdge_Y

 sObjectName = "ED_B[1;1]" 'Line Shape

 sParameterName = "Shape Points"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, vShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

Q.VITEC ActiveX Controls

71

Visual Basic Example: Center Point

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim lShapeParameter(0, 0 To 1) As Long

 Dim lCenterPoint_x As Long

 Dim lCenterPoint_y As Long

 lCenterPoint_x = 150 'x-Coordinate

 lCenterPoint_y = 150 'y-Coordinate

 lShapeParameter(0, 0) = lCenterPoint_x

 lShapeParameter(0, 1) = lCenterPoint_y

 sObjectName = "ED_B[1;1]" 'Line Shape

 sParameterName = "Shape Center Point"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, lShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

Visual Basic Example: Direction

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim lShapeParameter As Long

 lShapeParameter = 180 ' Angle

 sObjectName = "ED_B[1;1]" ' Line Shape

 sParameterName = "Shape Direction"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, lShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

2.6.2.3 Shape Rectangle

Parameter Name Returned VARIANT TYPE Comment

Shape Start Point VT_I4 | VT_ARRAY

1 Point

Start Point

The Start Point equals to the top left point of the
rectangle.

Shape End Point VT_I4 | VT_ARRAY

1 Point

End Point

The End Point equals to the bottom right point of the
rectangle.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Q.VITEC ActiveX Controls

72

Visual Basic Example

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim lShapeParameter(0 To 1, 0 To 1) As Long

 Dim lStartEdge_X As Long

 Dim lStartEdge_Y As Long

 Dim lEndEdge_X As Long

 Dim lEndEdge_Y As Long

 lStartEdge_X = 5

 lStartEdge_Y = 5

 lEndEdge_X = 400

 lEndEdge_Y = 400

 lShapeParameter(0, 0) = lStartEdge_X

 lShapeParameter(0, 1) = lStartEdge_Y

 lShapeParameter(1, 0) = lEndEdge_X

 lShapeParameter(1, 1) = lEndEdge_Y

 sObjectName = "WI[1;1]" 'Rectangle Shape

 sParameterName = "Shape Points"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, lShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

2.6.2.4 Shape Rectangle ->

Parameter Name Returned VARIANT TYPE Comment

Shape Start Point VT_I4 | VT_ARRAY

1 Point

Start Point

The Start Point equals to the top left point of the
rectangle.

Shape End Point VT_I4 | VT_ARRAY

1 Point

End Point

The End Point equals to the bottom right point of the
rectangle.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Shape Direction VT_R4 Direction of the rectangle

Range: 0 <= angle <= 360

Shape Direction Point VT_I4 | VT_ARRAY

1 Point

Point to change the direction of the rectangle.

This point is not supported in a checkers shape
properties page.

2.6.2.5 Shape Ellipse (Circle)

Parameter Name Returned VARIANT TYPE Comment

Shape Points VT_I4 | VT_ARRAY

2 Points

Point 1: Top Left Point

Point 2: Bottom Right Point

Shape Top Left Point VT_I4 | VT_ARRAY

1 Point

Top Left Point of the surrounding rectangle

Shape Bottom Right Point VT_I4 | VT_ARRAY

1 Point

Bottom Right Point of the surrounding Rectangle.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Q.VITEC ActiveX Controls

73

2.6.2.6 Shape Ellipse -> (Circle ->)

Parameter Name Returned VARIANT TYPE Comment

Shape Points VT_I4 | VT_ARRAY

2 Points

Point 1: Top Left Point

Point 2: Bottom Right Point

Shape Top Left Point VT_I4 | VT_ARRAY

1 Point

Top Left Point of the surrounding rectangle

Shape Bottom Right Point VT_I4 | VT_ARRAY

1 Point

Bottom Right Point of the surrounding Rectangle.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Shape Start Point VT_I4 | VT_ARRAY

1 Point

Start point of the part of the shape

The given point has not to lay exactly on the shape.

If not the intersection of the shape and the line given
by the new point and the center point is the new Start
Point.

Shape End Point VT_I4 | VT_ARRAY

1 Point

End point of the part of the shape

See remark of Start Point.

Shape Direction VT_BOOL Direction for the shape

0: clockwise

1: counterclockwise

Shape Direction Point VT_I4 | VT_ARRAY

1 Points

Point to change the direction of the shape

This point is not supported in a checkers shape
properties page.

2.6.2.7 Shape Doughnut

Parameter Name Returned VARIANT TYPE Comment

Shape Outer Circle Point VT_I4 | VT_ARRAY

1 Point

Top Left point of the surrounding rectangle of the
outer circle.

The Bottom Right point of the surrounding rectangle
is the point, which is point-symmetric to the given
point at the Center Point.

Shape Inner Circle Point VT_I4 | VT_ARRAY

1 Point

Top Left point of the surrounding rectangle of the
inner circle.

See comment of Shape Outer Circle Point.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Shape Start Point VT_I4 | VT_ARRAY

1 Points

Start point of the part of the shape.

The given point has not to lay exactly on the shape.

If not the intersection of the shape and the line
given by the new point and the center point is the
new Start Point.

Shape End Point VT_I4 | VT_ARRAY

1 Points

End point of the part of the shape.

See remark of Start Point.

Q.VITEC ActiveX Controls

74

Visual Basic Example: Shape Center Point

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim lShapeParameter(0, 0 To 1) As Long

 Dim lCenterPoint_x As Long

 Dim lCenterPoint_y As Long

 lCenterPoint_x = 250 'x-Coordinate

 lCenterPoint_y = 250 'y-Coordinate

 lShapeParameter(0, 0) = lCenterPoint_x

 lShapeParameter(0, 1) = lCenterPoint_y

 sObjectName = "WI[1;1]" 'Doughnut Shape

 sParameterName = "Shape Center Point"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, lShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

Visual Basic Example: Shape Outer Circle Point

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim lShapeParameter(0, 0 To 1) As Long

 Dim lOuterCirclePoint_x As Long

 Dim lOuterCirclePoint_y As Long

 lOuterCirclePoint_x = 200 'x-Coordinate

 lOuterCirclePoint_y = 200 'y-Coordinate

 lShapeParameter(0, 0) = lOuterCirclePoint_x

 lShapeParameter(0, 1) = lOuterCirclePoint_y

 sObjectName = "WI[1;1]" 'Doughnut Shape

 sParameterName = "Shape Outer Circle Point"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, lShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

2.6.2.8 Shape Doughnut ->

Parameter Name Returned VARIANT TYPE Comment

Shape Outer Circle Point VT_I4 | VT_ARRAY

1 Point

Top Left point of the surrounding rectangle of the
outer circle.

The Bottom Right point of the surrounding rectangle
is the point, which is point-symmetric to the given
point at the Center Point.

Shape Inner Circle Point VT_I4 | VT_ARRAY

1 Point

Top Left point of the surrounding rectangle of the
inner circle.

See comment of Shape Outer Circle Point.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Shape Start Point VT_I4 | VT_ARRAY

1 Points

Start point of the part of the shape.

The given point has not to lay exactly on the shape.

If not the intersection of the shape and the line
given by the new point and the center point is the
new Start Point.

Shape End Point VT_I4 | VT_ARRAY

1 Points

End point of the part of the shape.

See remark of Start Point.

Q.VITEC ActiveX Controls

75

Parameter Name Returned VARIANT TYPE Comment

Shape Direction VT_BOOL Direction for the shape

0: clockwise

1: counterclockwise

2.6.2.9 Shape Polygon

Parameter Name Returned VARIANT Type Comment

Shape Points VT_I4 | VT_ARRAY

n Points

A list of points which describes the polygon.

A maximum of 256 points is allowed.

Shape Center Point VT_I4 | VT_ARRAY

1 Points

Center Point

Visual Basic Example

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim lShapeParameter(0 To 2, 0 To 1) As Long

 Dim lPoint1_x As Long

 Dim lPoint1_y As Long

 Dim lPoint2_x As Long

 Dim lPoint2_y As Long

 Dim lPoint3_x As Long

 Dim lPoint3_y As Long

 lPoint1_x = 100 'x-Coordinate

 lPoint1_y = 100 'y-Coordinate

 lPoint2_x = 200

 lPoint2_y = 350

 lPoint3_x = 300

 lPoint3_y = 300

 lShapeParameter(0, 0) = lPoint1_x

 lShapeParameter(0, 1) = lPoint1_y

 lShapeParameter(1, 0) = lPoint2_x

 lShapeParameter(1, 1) = lPoint2_y

 lShapeParameter(2, 0) = lPoint3_x

 lShapeParameter(2, 1) = lPoint3_y

 sObjectName = "WI[1;1]" 'Shape Polygon

 sParameterName = "Shape Points"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, lShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

2.6.2.10 Object Shape

Parameter Name Returned VARIANT Type Comment

Shape Points VT_ARRAY | VT_I4

(3 * number of runs) + 1 points

a[0] : 3 * number of runs

0 <= i < number of runs:

a[3*i+1]: row number of the run i

a[3*i+2]: start column number of the
run i

a[3*i+3]: end column number of the
run i

The shape is returned in so called runs. A
run is a triple with the following meaning:

run[0]: row number of the run

run[1]: start column number of the run

run[2]: end column number of the run

Q.VITEC ActiveX Controls

76

2.6.2.11 Additional Shapes

2.6.2.11.1 Template Shape

The contour matching and the correlation matching checkers have two shapes. To get the values of the “Search Area”
shape, the shape parameter names are used. E.g. the parameter name “Shape Center Point” returns the center point
of the Search Area.

To get the values of the “Template” shape, the string “Template “ has to be inserted before the shape parameter
name. E.g. the parameter name “Template Shape Center Point” returns the center point of the Template.

Q.VITEC ActiveX Controls

77

2.7 setParameter(checkerName, parameterName, parametervalues)

The method setParameter sets the current value(s) of a checker parameter.

Return

VARIANT_BOOL

If the return value is TRUE setting the parameter was successful.

If the return value is FALSE any error occurred. In this case, you can call the methods

getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] checkerName BSTR ActiveX name of the checker e.g. "WI[1;1]".

[IN] parameterName BSTR Name of the current parameter e.g. "Custom Slice Level".

[IN] parameterValues VARIANT For the current type and meaning please refer the description of the concerning
parameter.

Remarks

The “ActiveX Name” of an checker can be seen and changed on the checker’s general property page.

If possible, the method setParameter() converts the data given in parameterValues automatically in the requested
data type. For further information about this please refer to Appendix A:VARIANT Type Conversion in Vision Q.400.

The method setParameter does not switch the ready state of Vision Q.400 do off. That means that Vision Q.400 can
be started before the method setParameter will return. It is strictly recommended not to start Vision Q.400 before the
method will return. If this situation is possible, you should use the method interruptStartSignals() to forbid the
starting of Vision Q.400 before the method setParameter is called. And you should use the method
interruptStartSignals() afterwards to allow the starting of Vision Q.400 again.

Visual Basic Example

The first example shows how to handle the method if the parameter is a single value (e.g. “Dynamic Slice Level Filter
Size” + filter value). The second example shows how to handle the function if more than one additional parameter is
sent to the function (e.g. "Static Slice Level" + Lower Limit + Upper Limit)

Example 1:

Private Sub Command3_Click()

Dim sObjectName As String

Dim sParameterName As String

Dim bReturn As Boolean

Dim sErrorText As String

Dim lFilterValue As Long

sObjectName = “WI[1;1]”

sParameterName = “Dynamic Slice Level Filter Size”

lFilterValue = 501

bReturn = VisionQ400Control1. _

 SetParameter(sObjectName, sParameterName, lFilterValue)

If bReturn = False Then

 SErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

Q.VITEC ActiveX Controls

78

Example 2:

Private Sub Command3_Click()

Dim sObjectName As String

Dim sParameterName As String

Dim bReturn As Boolean

Dim sErrorText As String

Dim yLowUpSliceLevel(0 To 1) As Byte

sObjectName = “WI[1;1]”

sParameterName = "Static Slice Level"

yLowUpSliceLevel(0) = 10

yLowUpSliceLevel(1) = 200

bReturn = VisionQ400Control1. _

 SetParameter(sObjectName, sParameterName, yLowUpSliceLevel)

If bReturn = False Then

 SErrorText = VisionQ400Control1.getLastErrorText()

 MsgBox (sErrorText)

End If

End Sub

Q.VITEC ActiveX Controls

79

2.7.1 General Remarks

If the data range of a parameter is limited, the limitation is given in the column “Parameter VARIANT Type”

of the following tables.

If the parameter is only limited on “both” sides, the format is given in the following table:

Format Meaning

[lower limit .. upper limit] lower limit <= allowed value <= upper limit

(lower limit .. upper limit] lower limit < allowed value <= upper limit

 [lower limit .. upper limit) lower limit <= allowed value < upper limit

 (lower limit .. upper limit) lower limit < allowed value < upper limit

If the parameter is only limited on “one” side, the format is given in the following table:

Format Meaning

(>= allowed value)

(> allowed value)

(<= allowed value)

(< allowed value)

2.7.2 Checker

2.7.2.1 Common Parameters

The parameters, which are described here, are used by different checkers.

Parameter Name Parameter VARIANT Type Comment

Enable Execution VT_BOOL

-1 and 1 as ON,

 0 as OFF

Sets if the execution of the checker should be
enabled (ON), or disabled (OFF).

Execute No parameter value With this parameter you can execute a checker.
This works only if Vision Q.400 is in the setup
mode.

2.7.2.1.1 Thresholding

Parameter Name Parameter VARIANT Type Comment

Custom Slice Level VT_BOOL

-1 and 1 as ON,

 0 as OFF

With this parameter you can activate and
deactivate the usage of custom slice level.

Dynamic Slice Level VT_I2 and VT_ARRAY

(one Dimensional, two values)

[0]: LowerLimit [- 254 .. 254]

[1]: UpperLimit [- 254 .. 254]

Changes the dynamic slice level values.

This parameter cannot be accessed if the static
slice level is active.

Dynamic Slice Level Filter
Size

VT_I2 [3..501]

The value has to be odd.

The filter size of the dynamic slice level.

The filter size should be at least twice as big as the
maximal size of the target object is on the X-axis

Q.VITEC ActiveX Controls

80

Parameter Name Parameter VARIANT Type Comment

and the Y-axis.

This parameter cannot be accessed if the static
slice level is active.

Static Slice Level VT_UI1 and VT_ARRAY

(one Dimensional, two values)

[0]: LowerLimit [0 .. 255]

[1]: UpperLimit [0 .. 255]

Set the limits of the static slice level.

This parameter cannot be accessed if the dynamic
slice level is active.

Use Static Slice Level VT_BOOL

-1 and 1 as Static Slice Level,

 0 as Dynamic Slice Level

With this parameter you can between the usage of
the static and the dynamic slice level.

2.7.2.1.2 Image Filters

The placeholder Filter Name in the following table can consist of:

- An image filter name, e.g. “Closing”

- An image filter name.

If different image filters with the same name have to be distinguished in the image filter list, the name has to
be modified by an index: name[Index]. The index starts with 1. E.g “Closing[2]” means the second closing
filter in the list.

The placeholder Parameter Name in the following table can consist of:

- a parameter name, e.g. “Filter Size”

Parameter Name Parameter VARIANT Type Comment

Image Filter Gray
<Filter Name,
Parameter Name>

Depends on the parameter. If an
enumeration parameter is set, the
current enumeration value has to be
VT_BSTR.

Sets the current value of the given parameter.

Image Filter Binary
<Filter Name,
Parameter Name>

2.7.2.2 Window Checker

Parameter Name Parameter VARIANT Type Comment

Thresholding All parameters described in Thresholding

Image Filters All parameters described in Image Filters

2.7.2.3 Feature Extraction Checker

Parameter Name Parameter VARIANT Type Comment

Advanced Object Selection
Formula

VT_BSTR The formula string used for the advanced object
selection.

Boundary VT_BOOL

 -1 and 1 as ON,

 0 as OFF

Use this parameter to define whether or not an
object to be processed will be allowed to touch
the checker shape.

Thresholding All parameters described in Thresholding

Q.VITEC ActiveX Controls

81

Parameter Name Parameter VARIANT Type Comment

Image Filters All parameters described in Image Filters

2.7.2.4 Binary Edge Detection Checker

Parameter Name Parameter VARIANT Type Comment

Width VT_I4 [1.. Upper Limit]

Sets the current “Width” of a binary edge
detection checker.

The Upper Limit depends on the current image
size.

Depth VT_I4 [1.. Upper Limit]

Sets the current “Depth” of a binary edge
detection checker.

The Upper Limit depends on the current image
size.

Thresholding All parameters described in Thresholding

Image Filters All parameters described in Image Filters

2.7.2.5 Gray Edge Detection Checker

Parameter Name Parameter VARIANT Type Comment

Maximal Edge Width VT_I4 (>=0) This Parameter is only available if the checker
shape is a rectangle and if the edge type
"connected" is selected.

Minimum Edge Length VT_I4 (>= 0)

This Parameter is only available if the checker
shape is a rectangle.

Minimum Edge Length defines the minimal length
which an edge piece must have in order to be
considered in the calculation of the edge
representative.

Minimum Gradient VT_I4 [5 .. 254]

Minimum Gradient defines how high the edge
gradient (gray-value difference between a

pixel and its neighbours) needs to be at a given
pixel in order for it to be accepted as an

edge point.

2.7.2.6 Difference Checker

Parameter Name Parameter VARIANT Type Comment

Rotate Template VT_BOOL (BOOL)

 -1 and 1 as TRUE

In order to speed up the checker calculation, all
template rotations brought about by position and
rotation adjustments may be calculated and saved
in advance during the initial checker definition.
With this command you can execute this
calculation.
Use this method after setParameter "Refresh
Template" or setParameter "Template Rotation".

Accuracy VT_BSTR

 "high",

The accuracy parameters High, Medium, and
Standard let you determine whether pseudo

Q.VITEC ActiveX Controls

82

Parameter Name Parameter VARIANT Type Comment

 "medium"

 "standard"

differences will influence the image processing to a
lesser or greater extent.
Please note that setting a high accuracy factor
slows down the algorithms.

Template Rotation VT_R8 and VT_ARRAY

 0: Min Angle [-180° .. 360°]

 1: Max Angle [-180° .. 360°]

 2: Delta Angle

The confines of the rotation range are defined in
the parameters Min Angle and Max Angle, the
increment itself in "Delta Angle".

The maximum difference between Max Angle and
Min Angle is 360°.

After changing one of these values, the method
setParameter() with the parameter "Rotate
Template" has to be executed.

Selected Range VT_BOOL (BOOL)

 -1 and 1 as "Process Selected
Range",

 0 as "Process Not Selected
Range”

When "Process Selected Rang" is set as true (1 or -
1) , the differences within the range of the
threshold values will determine the objects to
continue the process. If you select this parameter
as false (0), the differences outside the selected
range are the objects.

Slice Level VT_I2 and VT_ARRAY

 0: LowerLimit [- 254 .. 254]

 1: UpperLimit [- 254 .. 254]

Threshold which determines the range of valid
differences.

Refresh Template VT_BOOL

 -1 and 1 as TRUE

With this command you can force an update of the
template.
If the template is rotated the method
setParameter() with the parameter "Rotate
Template" must be executed.

This parameter can only be set in the setup mode.

Binary Image Filters All binary parameters described in Image Filters

2.7.2.7 Contour Matching

Parameter Name Parameter VARIANT Type Comment

Use Scale VT_I4 [0..3]

This parameter the model type:

0 = Standard

1 = Scale

2 = Anisotrope

Search Method VT_R8 [0.0 .. 1.0]

The parameter influences the search heuristic of
the checker. A value of “0.0” means safe and
slower. “1.0” means faster and maybe objects will
not be found.

Maximum Overlap VT_R8 [0.0 .. 1.0]

The parameter „Maximum Overlap, lets you
specify the extent to which two matches may
overlap (in percent).

Angle Range VT_R8 and VT_ARRAY

 0: StartAngle [– 360.0 ..
360.0]

 1: AngleExtend [– 360.0 ..
360.0]

If the object’s rotation may vary in the search
images you can specify the allowed range in the
parameters “Start Angle” and “End Angle”
(StartAngle + AngleExtend).

Scale Range [VT_R8 and VT_ARRAY

 0: MinScale [0.0 .. 5.0]

Similarly to the range of orientation, you can
specify an allowed range of scale with the

Q.VITEC ActiveX Controls

83

Parameter Name Parameter VARIANT Type Comment

 1: MaxScale [0.0 .. 5.0]

parameters „Min Scale“ and „Max Scale”.

Scale Range Column [VT_R8 and VT_ARRAY

 0: MinScale [0.0 .. 5.0]

 1: MaxScale [0.0 .. 5.0]

Similarly to the range of orientation, you can
specify an allowed range of scale (column) for
ansiotrope scaling with the parameters „Min
Scale“ and „Max Scale”.

Refresh Template VT_BOOL

 -1 and 1 as TRUE

This parameter reads a new template image for
the model to be calculated.

This parameter can only be set in the setup mode.

Object Appearance VT_I4 [0 .. 2]

 0 = like template

 1 = like template or inverted

 2 = dynamic

The parameter „Object Appearance“ lets you
specify whether the polarity, i.e., the direction of
the contrast, must be observed.

Recalculate Model VT_BOOL

 -1 and 1 as TRUE

This parameter lets you recalculate the model with
the current template.

Minimum Correlation VT_R8 [0.0 .. 1.0]

With the parameter „Minimum Contrast“ you can
specify the contrast a pixel in a search image must
have in order to be compared with the model.

Number Of Matches VT_I4 [0..128]

Sets the current value of the parameter number of
matches.

Minimum Inspection
Contrast

VT_I4 [0..255]

Sets the current value of the parameter “Minimum
Inspection Contrast” of the checker.
(Former Name of this parameter: "Minimum
Contrast")

Maximum Model Contrast VT_I4 [0..255]

Sets the current setting of the parameter
“Maximum Model Contrast” of the checker.

Minimum Model Contrast VT_I4 [0..255]

Sets the current value of the parameter “Minimum
Model Contrast” of the checker.

(Former name of this parameter: "Contrast ")

Last Level VT_I4

Sets the current value of the parameter “Last
Compression Level”.

Export Contour Model VT_BSTR The name of the file, in which the contour model
wll be exported, e.g. “C:\Temp\Model.bmp”

Area Boundary VT_BOOL

 -1 and 1 as ON

 0 as OFF

Sets the current value of the parameter “Area
Boundary”.

Accuracy VT_I4 [0…4]

 0 = Pixel

 1 = Subpixel Standard

 2 = Subpixel Advanced

 3 = Subpixel High

 4 = Subpixel Very High

Sets the current setting of the parameter
“Accuracy”

Minimum Component Size VT_I4 [0..255]

Sets the current setting of the parameter
“Minimum Component Size” of the checker.

Optimize Large Models VT_I4

 0 = none

 1 = low

 2 = medium

 3 = high

Sets the current setting of the parameter
“Optimize Large Models” of the checker.

Output Point VT_BOOL Sets the current setting of the parameter “Output

Q.VITEC ActiveX Controls

84

Parameter Name Parameter VARIANT Type Comment

-1 and 1 as Center of Model

 0 as Center of Template Area

Point” of the checker.

Pregenerate Model VT_BOOL

-1 and 1 as ON

 0 as OFF

Sets the current setting of the parameter
“Pregenerate Model” of the checker.

Maximal Allowed
Deformation

VT_I4

Sets the current setting of the parameter
“Maximal Allowed Deformation”.

Reference Point [VT_R8 and VT_ARRAY

 0: MinScale [0.0 .. 5000.0]

 1: MaxScale [0.0 .. 5000.0]

Set the reference point of the checker.

2.7.2.8 Correlation Matching

Parameter Name Parameter VARIANT Type Comment

Maximum Overlap VT_R8 [0.0 .. 1.0]

The parameter „Maximum Overlap, lets you
specify the extent to which two matches may
overlap (in percent).

Angle Range VT_R8 and VT_ARRAY

 0: StartAngle [– 360.0 ..
360.0]

 1: AngleExtend [– 360.0 ..
360.0]

If the object’s rotation may vary in the search
images you can specify the allowed range in the
parameters “Start Angle” and “End Angle”
(StartAngle + AngleExtend).

Refresh Template VT_BOOL

 -1 and 1 as TRUE

This parameter reads a new template image for
the model to be calculated.

This parameter can only be set in the setup mode.

Object Appearance VT_I4 [0 .. 1]

 0 = like template

 1 = like template or inverted

The parameter „Object Appearance“ lets you
specify whether the polarity, i.e., the direction of
the contrast, must be observed.

Recalculate Model VT_BOOL

 -1 and 1 as TRUE

This parameter lets you recalculate the model with
the current template.

Minimum Correlation VT_R8 [0.0 .. 1.0]

With the parameter „Minimum Contrast“ you can
specify the contrast a pixel in a search image must
have in order to be compared with the model.

Number Of Matches VT_I4 [0..128]

Sets the current value of the parameter number of
matches.

Last Level VT_I4

Sets the current value of the parameter “Last
Compression Level”.

Export Contour Model VT_BSTR The name of the file, in which the contour model
wll be exported, e.g. “C:\Temp\Model.bmp”

Sequences VT_I4

Sets the current setting of the parameter “Pyramid
Levels”. Setting to 0 results in the maximum
available being used.

Area Boundary VT_BOOL

 -1 and 1 as ON

 0 as OFF

Sets the current value of the parameter “Area
Boundary”.

Accuracy VT_I4 [0..1]

 0 = Pixel

 1 = Subpixel Standard

Sets the current setting of the parameter
“Accuracy”

Q.VITEC ActiveX Controls

85

2.7.2.9 OCR Checker

Parameter Name Parameter Value Comment

Use Classifier VT_BOOL

 -1 and 1 as ON,

 0 as OFF

Classifier Name VT_BSTR name of the new classifier

Correlation Threshold VT_R8 [0.0 .. 1.0]

Thresholding All parameters described in Thresholding

Image Filters All parameters described in Image Filters

2.7.2.10 Code Reader

Parameter Name Parameter Value Comment

Code Type VT_BSTR Sets the current “Code Type” setting of the
checker.

Following code types are valid:

"2/5 Industrial", "2/5 Interleaved", "Codabar",
"Code 39", "Code 93", "Code 128", "EAN-13",
"EAN-13 Add-On 2", "EAN-13 Add-On 5", "EAN-
8", "EAN-8 Add-On 2", "EAN-8 Add-On 5", "UPC-
A", "UPC-A Add-On 2", "UPC-A Add-On 5", "UPC-
E", "UPC-E Add-On 2", "UPC-E Add-On 5",
"PharmaCode", "RSS-14", "RSS-14 Truncated",
"RSS-14 Stacked", "RSS-14 Stacked Omnidir",
"RSS Limited", "RSS Expanded", "RSS Expanded
Stacked"

Number Of Codes VT_I4 Sets the current “Number of Codes” setting of
the checker.

Number Of Loops VT_I4

Sets the current “Number of Search Loops”
setting of the checker.

This setting is only valid for 2D code types.

Model Parameter Mode VT_I4

Sets the current “Code Model Parameter” setting
of the checker.

Pharma Code Reverse VT_BOOL

 -1 and 1 as TRUE,

 0 as FALSE

If set to TRUE a pharma code is read in reverse
direction, if FALSE not.

Check Digit VT_BOOL

 -1 and 1 as TRUE,

 0 as FALSE

Sets the current value of the parameter “Check
Digit”.

2D Code Model Parameters – Only valid in “Manual” mode

Teach 2D VT_BOOL

 -1 and 1 as TRUE

With this command you can execute the teaching
of 2D code parameters.
After processing the teaching of the 2D code the
processing time of the checker will be faster.

This parameter can only be set in the setup
mode.

Min Contrast 2D VT_I4 Sets the current value of the parameter “Minimal
Contrast”.

Max Angle Variation ECC200 2D VT_R8

Sets the current value of the parameter
“Maximal Angle Variation”.

This parameter is only valid for the ECC200 code.

Q.VITEC ActiveX Controls

86

Parameter Name Parameter Value Comment

Min Symbol Col 2D VT_I4

Sets the current value of the parameter “Minimal
Symbol Columns” / “Maximal Symbol Columns”. Max Symbol Col 2D

Min Symbol Row 2D VT_I4

Sets the current value of the parameter “Minimal
Symbol Rows” / “Maximal Symbol Rows”. Max Symbol Row 2D

Symbol Shape 2D VT_BSTR Sets the current value of the parameter “Symbol
Shape”.

Mirrored 2D VT_BSTR Sets the current value of the parameter
“Mirrored”.

Polarity 2D VT_BSTR Sets the current value of the parameter
“Polarity”.

Module Size Min 2D VT_I4 Sets the current value of the parameter “Minimal
Module Size” / “Maximal Module Size”. Module Size Max 2D

Module Gap Col Max 2D VT_BSTR

Sets the current value of the parameter “Minimal
Module Gap” / “Maximal Module Gap”. Module Gap Col Min 2D

Module Gap Row Max 2D VT_BSTR

Sets the current value of the parameter “Minimal
Module Gap Row” / “Maximal Module Gap Row”. Module Gap Row Min 2D

Model Type QR 2D VT_BSTR

Sets the current value of the parameter “QR
Model Type”.

This parameter is only valid for the QR code.

Version Min QR 2D VT_I4

Sets the current value of the parameter “Minimal
Symbol Version” / Maximal Symbol Version”.

This parameter is only valid for the QR code.
Version Max QR 2D

Persistance 2D VT_I4 Sets the current value of the parameter
“Persistence”.

Small Module Robustness VT_BSTR Sets the current value of the parameter Small
Module Robustness

Strict Model 2D VT_BSTR Sets the current value of the parameter “Strict
Model”.

Module Width Max PDF417 2D VT_I4

Sets the current “Module Width Max” / Module
Width Min” setting of the checker.

This parameter is only valid for the PDF417 code.
Module Width Min PDF417 2D

Pattern Position Min QR 2D VT_I4 Sets the current “Position Pattern Min” setting of
the checker.

Maximal Symbol Columns PDF417
2D

VT_I4 Sets the current “Maximal Symbol Columns” /
“Minimal Symbol Columns” setting of the
checker.

This parameter is only valid for the PDF417 code.
Minimal Symbol Columns PDF417
2D

Maximal Symbol Rows PDF417 2D VT_I4 Sets the current “Maximal Symbol Rows” /
“Minimal Symbol Rows” setting of the checker.

This parameter is only valid for the PDF417 code.
Minimal Symbol Rows PDF417 2D

Module Aspect Min PDF417 2D VT_I4 Sets the current “Module Aspect Max” / Module
Aspect Min” setting of the checker.

This parameter is only valid for the PDF417 code.
Module Aspect Max PDF417 2D

1D Code Model Parameters – Only valid in “Manual” mode

GrayImage Filters 1D All gray parameters described in Image Filters

Min Size Element 1D VT_R8 Sets the current value of the parameter “Minimal
Element Size”.

Max Size Element 1D VT_R8 Sets the current value of the parameter
“Maximal Element Size”.

Min Element Height 1D VT_I4 Sets the current value of the parameter
“Minimum Element Height”.

Angle Range 1D VT_I4 Sets the current value of the parameter “Angle
Range”.

Measure Threshold 1D VT_R8 Sets the current value of the parameter

Q.VITEC ActiveX Controls

87

Parameter Name Parameter Value Comment

“Segmentation Threshold”.

Orientation 1D VT_R8 Sets the current value of the parameter “Element
Orientation”.

Orientation Tolerance 1D VT_R8 Sets the current value of the parameter “Element
Orientation Tolerance”.

Composite Code 1D VT_BSTR Sets the current value of the parameter “1D
Composite Code”.

2.7.2.11 Edge Detection Gray Value Projection

Parameter Name Parameter Value Comment

Transition VT_I4 Sets the current “Edge Transition” setting of the
checker.

All = 0

Dark - Light = 1

Light – Dark = 2

Select Edges VT_I4 Sets the current “Edge Selection” setting of the
checker.

All = 0

First = 1

Last = 2

First - Last = 3

Maximum Gradient = 4

Execution Mode VT_I4

Sets the current “Execution Mode” setting of the
checker.

Edge Pairs = 0

Edge Position = 1

Gradient VT_I4 Sets the current “Minimal Gradient” setting of
the checker. (0-255)

Noise Level VT_I4 Sets the current “Noise Level” setting of the
checker.

(0-100)

Number Of Edges VT_I4 Sets the current “Number of edges” setting of
the checker. (0-255)

GrayImage Filters All gray parameters described in Image Filters

2.7.2.12 Identifier Checker

Parameter Name Parameter Value Comment

Sample Images Directory VT_BSTR Sets the sample images directory.

“None”, deselect any sample images directory, cannot
be set.

Use Color Information VT_BOOL

-1 and 1 as “is used”

 0 as “is not used”

Sets the “Use Color Information” of the checker

Image Resize Method VT_BSTR Sets the “Image Resize Method” of the checker.

Resulting Image Size VT_R8 Sets the “Resulting Image Size” of the checker.

Can only be set if the “Image Resize Method” is set to

Q.VITEC ActiveX Controls

88

Parameter Name Parameter Value Comment

“Resulting Image Size”.

Scaling Factor VT_R8 Sets the “Scaling Factor” of the checker.

Can only be set if the “Image Resize Method” is set to
“Scaling Factor”.

Subsampling Step VT_R8 Sets the “Subsampling Step” of the checker.

Can only be set if the “Image Resize Method” is set to
“Subsampling Step”.

Maximum Number of Result VT_I4 Sets the “Maximum Nuber Of Results” of the checker.

Rating Method VT_BSTR Sets the “Rating Method” of the checker.

Rating Threshold VT_R8 Sets the “Rating Threshold” of the checker.

Train No parameter value Trains the identifier with the currently selected settings.

Attention:

If some settings are changed by the GUI, and “Apply” is
not pressed, these new settings will not be used for the
training.

If the identifier is trained by the ActiveX control, settings
should only be changed by the ActiveX control

2.7.2.13 Position and Rotation Adjustment Checker

Parameter Name Parameter VARIANT Type Comment

Set Base Position Not used

Same as the button "Copy Current Values" on the checker's
dependencies property page: the current values are used as
the new reference values.

2.7.3 Shapes

If you change some shape parameters by calling the method setParameter, all other shape parameters may be
changed implicitly, too.

E.g. if you change the center point of a shape, all other shape points are moved, too. You can get the changed values
by calling the method getParameter. (You can test the behaving of setParameter by changing some parameters in a
checkers shape property page.)

The method setParameter fails if only one of the (implicitly) changed parameters lays outside it’ s range, e.g. all
changed image points have to lay inside the image.

Visual Basic Example

The first example shows how to get shape parameters from a checker and the second example shows how to set
shape parameters.

Q.VITEC ActiveX Controls

89

Example 1:

Private Sub Command3_Click()

Dim sObjectName As String

Dim sParameterName As String

Dim vShapeParameter As Variant

Dim lStartEdge_X As Long

Dim lStartEdge_Y As Long

Dim lEndEdge_X As Long

Dim lEndEdge_Y As Long

sObjectName = “WI[1;1]” 'Rectangle Shape

sParameterName = "Shape Points"

vShapeParameter = VisionQ400Control1. _

GetParameter (sObjectName, sParameterName)

If TypeName(vShapeParameter) = "Empty" Then

 MsgBox (VisionQ400Control1.getLastErrorText)

Else

 lStartEdge_X = vShapeParameter(0, 0)

 lStartEdge_Y = vShapeParameter(0, 1)

 lEndEdge_X = vShapeParameter(1, 0)

 lEndEdge_Y = vShapeParameter(1, 1)

End If

End Sub

Example 2:

Dim sObjectName As String

Dim sParameterName As String

Dim lStartEdge_X As Long

Dim lStartEdge_Y As Long

Dim lEndEdge_X As Long

Dim lEndEdge_Y As Long

Dim lShapeParameter(0 To 2, 0 To 1) As Long

Dim lEdge_1_X As Long

Dim lEdge_1_Y As Long

Dim lEdge_2_X As Long

Dim lEdge_2_Y As Long

Dim lEdge_3_X As Long

Dim lEdge_3_Y As Long

lEdge_1_X = 1

lEdge_1_Y = 1

lEdge_2_X = 500

lEdge_2_Y = 1

lEdge_3_X = 250

lEdge_3_Y = 400

lShapeParameter(0, 0) = lEdge_1_X

lShapeParameter(0, 1) = lEdge_1_Y

lShapeParameter(1, 0) = lEdge_2_X

lShapeParameter(1, 1) = lEdge_2_Y

lShapeParameter(2, 0) = lEdge_3_X

lShapeParameter(2, 1) = lEdge_3_Y

sObjectName = "WI[1;1]" 'Poligon Shape with 3 Points

sParameterName = "Shape Points"

bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, vShapeParameter)

If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

End If

End Sub

2.7.3.1 Shape Line ->

Parameter Name Parameter VARIANT Type Comment

Shape Points VT_I4 | VT_ARRAY

2 Points

Point 1: Start Point

Point 2: End Point

If the shape is a horizontal line, the y coordinates of the to
points has to be identical.

If the shape is a vertical line, the x coordinates of the to points
has to be identical.

Shape Start Point VT_I4 | VT_ARRAY

1 Point

Start Point

If the shape is a horizontal or a vertical line, only the x or the y
coordinate is used.

Q.VITEC ActiveX Controls

90

Parameter Name Parameter VARIANT Type Comment

Shape End Point VT_I4 | VT_ARRAY

1 Point

End Point

If the shape is a horizontal or a vertical line, only the x or the y
coordinate is used.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Shape Direction VT_R4 Angle of the line

Range: 0 <= angle <= 360

If the shape is a horizontal or vertical line, the angle is converted
to a horizontal or vertical direction, and the Start and End Point
may be exchanged.

Visual Basic Example: Shape Points

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim vShapeParameter(0 To 1, 0 To 1) As Long

 Dim lStartEdge_X As Long

 Dim lStartEdge_Y As Long

 Dim lEndEdge_X As Long

 Dim lEndEdge_Y As Long

 lStartEdge_X = 5

 lStartEdge_Y = 5

 lEndEdge_X = 400

 lEndEdge_Y = 400

 vShapeParameter(0, 0) = lStartEdge_X

 vShapeParameter(0, 1) = lStartEdge_Y

 vShapeParameter(1, 0) = lEndEdge_X

 vShapeParameter(1, 1) = lEndEdge_Y

 sObjectName = "ED_B[1;1]" 'Line Shape

 sParameterName = "Shape Points"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, vShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

Q.VITEC ActiveX Controls

91

Visual Basic Example: Center Point

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim lShapeParameter(0, 0 To 1) As Long

 Dim lCenterPoint_x As Long

 Dim lCenterPoint_y As Long

 lCenterPoint_x = 150 'x-Coordinate

 lCenterPoint_y = 150 'y-Coordinate

 lShapeParameter(0, 0) = lCenterPoint_x

 lShapeParameter(0, 1) = lCenterPoint_y

 sObjectName = "ED_B[1;1]" 'Line Shape

 sParameterName = "Shape Center Point"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, lShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

Visual Basic Example: Direction

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim lShapeParameter As Long

 lShapeParameter = 180 ' Angle

 sObjectName = "ED_B[1;1]" ' Line Shape

 sParameterName = "Shape Direction"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, lShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

Q.VITEC ActiveX Controls

92

2.7.3.2 Shape Rectangle

Parameter Name Parameter VARIANT Type Comment

Shape Start Point VT_I4 | VT_ARRAY

1 Point

Start Point

The Start Point equals to the top left point of the
rectangle.

Shape End Point VT_I4 | VT_ARRAY

1 Point

End Point

The End Point equals to the bottom right point of the
rectangle.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Visual Basic Example

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim lShapeParameter(0 To 1, 0 To 1) As Long

 Dim lStartEdge_X As Long

 Dim lStartEdge_Y As Long

 Dim lEndEdge_X As Long

 Dim lEndEdge_Y As Long

 lStartEdge_X = 5

 lStartEdge_Y = 5

 lEndEdge_X = 400

 lEndEdge_Y = 400

 lShapeParameter(0, 0) = lStartEdge_X

 lShapeParameter(0, 1) = lStartEdge_Y

 lShapeParameter(1, 0) = lEndEdge_X

 lShapeParameter(1, 1) = lEndEdge_Y

 sObjectName = "WI[1;1]" 'Rectangle Shape

 sParameterName = "Shape Points"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, lShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

Q.VITEC ActiveX Controls

93

2.7.3.3 Shape Rectangle ->

Parameter Name Parameter VARIANT Type Comment

Shape Start Point VT_I4 | VT_ARRAY

1 Point

Start Point

The Start Point equals to the top left point of the
rectangle.

Shape End Point VT_I4 | VT_ARRAY

1 Point

End Point

The End Point equals to the bottom right point of the
rectangle.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Shape Direction VT_R4 Direction of the rectangle

Range: 0 <= angle <= 360

Shape Direction Point VT_I4 | VT_ARRAY

1 Point

Point to change the direction of the rectangle.

This point is not supported in a checkers shape
properties page.

2.7.3.4 Shape Ellipse (Circle)

Parameter Name Parameter VARIANT Type Comment

Shape Points VT_I4 | VT_ARRAY

2 Points

Point 1: Top Left Point

Point 2: Bottom Right Point

Shape Top Left Point VT_I4 | VT_ARRAY

1 Point

Top Left Point of the surrounding rectangle

Shape Bottom Right Point VT_I4 | VT_ARRAY

1 Point

Bottom Right Point of the surrounding Rectangle.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Q.VITEC ActiveX Controls

94

2.7.3.5 Shape Ellipse -> (Circle ->)

Sometimes the given point cannot be set directly, but has to be modified (see e.g. the comment of “Shape Start
Point”). In this case the modified value is set, the last error number is set to 7779, and the method returns FALSE.
Therefore if the method resturns FALSE, it has to be checked if the last error number is 7779. If yes the error can be
ignored, and the corrected point can be got with the method getParameter().

Parameter Name Parameter VARIANT Type Comment

Shape Points VT_I4 | VT_ARRAY

2 Points

Point 1: Top Left Point

Point 2: Bottom Right Point

Shape Top Left Point VT_I4 | VT_ARRAY

1 Point

Top Left Point of the surrounding rectangle

Shape Bottom Right Point VT_I4 | VT_ARRAY

1 Point

Bottom Right Point of the surrounding Rectangle.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Shape Start Point VT_I4 | VT_ARRAY

1 Point

Start point of the part of the shape

The given point has not to lay exactly on the shape.

If not the intersection of the shape and the line given
by the new point and the center point is the new Start
Point.

Shape End Point VT_I4 | VT_ARRAY

1 Point

End point of the part of the shape

See remark of Start Point.

Shape Direction VT_BOOL Direction for the shape

0: clockwise

1: counterclockwise

Shape Direction Point VT_I4 | VT_ARRAY

1 Points

Point to change the direction of the shape

This point is not supported in a checkers shape
properties page.

2.7.3.6 Shape Doughnut

Sometimes the given point cannot be set directly, but has to be modified (see e.g. the comment of “Shape Start
Point”). In this case the modified value is set, the last error number is set to 7779, and the method returns FALSE.
Therefore if the method resturns FALSE, it has to be checked if the last error number is 7779. If yes the error can be
ignored, and the corrected point can be got with the method getParameter().

Parameter Name Parameter VARIANT Type Comment

Shape Outer Circle Point VT_I4 | VT_ARRAY

1 Point

Top Left point of the surrounding rectangle of the
outer circle.

The Bottom Right point of the surrounding rectangle
is the point, which is point-symmetric to the given
point at the Center Point.

Shape Inner Circle Point VT_I4 | VT_ARRAY

1 Point

Top Left point of the surrounding rectangle of the
inner circle.

See comment of Shape Outer Circle Point.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Shape Start Point VT_I4 | VT_ARRAY

1 Points

Start point of the part of the shape.

The given point has not to lay exactly on the shape.

If not the intersection of the shape and the line

Q.VITEC ActiveX Controls

95

Parameter Name Parameter VARIANT Type Comment

given by the new point and the center point is the
new Start Point.

Shape End Point VT_I4 | VT_ARRAY

1 Points

End point of the part of the shape.

See remark of Start Point.

Q.VITEC ActiveX Controls

96

Visual Basic Example: Shape Center Point

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim lShapeParameter(0, 0 To 1) As Long

 Dim lCenterPoint_x As Long

 Dim lCenterPoint_y As Long

 lCenterPoint_x = 250 'x-Coordinate

 lCenterPoint_y = 250 'y-Coordinate

 lShapeParameter(0, 0) = lCenterPoint_x

 lShapeParameter(0, 1) = lCenterPoint_y

 sObjectName = "WI[1;1]" 'Doughnut Shape

 sParameterName = "Shape Center Point"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, lShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

Visual Basic Example: Shape Outer Circle Point

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim lShapeParameter(0, 0 To 1) As Long

 Dim lOuterCirclePoint_x As Long

 Dim lOuterCirclePoint_y As Long

 lOuterCirclePoint_x = 200 'x-Coordinate

 lOuterCirclePoint_y = 200 'y-Coordinate

 lShapeParameter(0, 0) = lOuterCirclePoint_x

 lShapeParameter(0, 1) = lOuterCirclePoint_y

 sObjectName = "WI[1;1]" 'Doughnut Shape

 sParameterName = "Shape Outer Circle Point"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, lShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

2.7.3.7 Shape Doughnut ->

Parameter Name Parameter VARIANT Type Comment

Shape Outer Circle Point VT_I4 | VT_ARRAY

1 Point

Top Left point of the surrounding rectangle of the
outer circle.

The Bottom Right point of the surrounding rectangle
is the point, which is point-symmetric to the given
point at the Center Point.

Shape Inner Circle Point VT_I4 | VT_ARRAY

1 Point

Top Left point of the surrounding rectangle of the
inner circle.

See comment of Shape Outer Circle Point.

Shape Center Point VT_I4 | VT_ARRAY

1 Point

Center Point

Shape Start Point VT_I4 | VT_ARRAY

1 Points

Start point of the part of the shape.

The given point has not to lay exactly on the shape.

If not the intersection of the shape and the line
given by the new point and the center point is the
new Start Point.

Shape End Point VT_I4 | VT_ARRAY

1 Points

End point of the part of the shape.

See remark of Start Point.

Q.VITEC ActiveX Controls

97

Parameter Name Parameter VARIANT Type Comment

Shape Direction VT_BOOL Direction for the shape

0: clockwise

1: counterclockwise

Q.VITEC ActiveX Controls

98

2.7.3.8 Shape Polygon

Parameter Name Parameter VARIANT Type Comment

Shape Points VT_I4 | VT_ARRAY

n Points

A list of points which describes the polygon.

A maximum of 256 points is allowed.

Shape Center Point VT_I4 | VT_ARRAY

1 Points

Center Point

Visual Basic Example

Private Sub Command1_Click()

 Dim bReturn As Boolean

 Dim sObjectName As String

 Dim sParameterName As String

 Dim lShapeParameter(0 To 2, 0 To 1) As Long

 Dim lPoint1_x As Long

 Dim lPoint1_y As Long

 Dim lPoint2_x As Long

 Dim lPoint2_y As Long

 Dim lPoint3_x As Long

 Dim lPoint3_y As Long

 lPoint1_x = 100 'x-Coordinate

 lPoint1_y = 100 'y-Coordinate

 lPoint2_x = 200

 lPoint2_y = 350

 lPoint3_x = 300

 lPoint3_y = 300

 lShapeParameter(0, 0) = lPoint1_x

 lShapeParameter(0, 1) = lPoint1_y

 lShapeParameter(1, 0) = lPoint2_x

 lShapeParameter(1, 1) = lPoint2_y

 lShapeParameter(2, 0) = lPoint3_x

 lShapeParameter(2, 1) = lPoint3_y

 sObjectName = "WI[1;1]" 'Shape Polygon

 sParameterName = "Shape Points"

 bReturn = VisionQ400Control1. _

 setParameter(sObjectName, sParameterName, lShapeParameter)

 If bReturn = False Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 End If

End Sub

2.7.3.9 Shape Object Shape

Parameter Name Parameter VARIANT Type Comment

Refresh Object VT_I4

The row index in the dependencies list of the object shape.
The object in this row will be refreshed.

This parameter cannot be set for a dynamic object shape.

Refresh All
Objects

Not used All objects in the dependencies list of the object shape are
refreshed.

This parameter cannot be set for a dynamic object shape.

2.7.3.10 Additional Shapes

2.7.3.10.1 Template Shape

The contour matching and the correlation matching checkers have two shapes. To get the values of the “Search Area”
shape, the shape parameter names are used. E.g. the parameter name “Shape Center Point” returns the center point
of the Search Area.

Q.VITEC ActiveX Controls

99

To get the values of the “Template” shape, the string “Template “ has to be inserted before the shape parameter
name. E.g. the parameter name “Template Shape Center Point” returns the center point of the Template.

Q.VITEC ActiveX Controls

100

2.8 Shape Methods

2.8.1 getShapeAdjusted(CheckerName)

The method getShapeAdjusted returns a variant value which includes the coordinates of the moved shape. A checker
shape can be moved by a position and rotation adjustment.

Return Value

VARIANT

For more details please refer to the table below.

The method returns an empty VARIANT if it fails. In this case, you can call the methods

getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

 [IN] checkerName BSTR ActiveX Name of the checker e.g. "WI[1;1]".

Remarks

This method is very helpful when adding a checker shape to a received camera image.

Shape Type Meaning

Line -> VT_I4 | VT_ARRAY

2 Points

Point 1: Start Point rotated

Point 2: End Point rotated

Rectangle VT_I4 | VT_ARRAY

4 Points

Point 1: Top Left Point rotated

Point 2: Top Right Point rotated

Point 3: Bottom Right Point rotated

Point 3: Bottom Left Point rotated

Rectangle -> VT_I4 | VT_ARRAY

4 Points

Point 1: Top Left Point rotated

Point 2: Top Right Point rotated

Point 3: Bottom Right Point rotated

Point 3: Bottom Left Point rotated

Ellipse / Circle VT_I4 | VT_ARRAY

n Points

A list of points, which describe the
rotated part of the ellipse /circle

Ellipse / Circle -> VT_I4 | VT_ARRAY

n Points

A list of points, which describe the
rotated part of the ellipse /circle ->

Doughnut VT_I4 | VT_ARRAY

n Points

A list of points, which describe the
rotated part of the doughnut.

Polygon VT_I4 | VT_ARRAY

n Points

A list of points, which describe the
rotated polygon

Object Shape VT_ARRAY | VT_I4

(3 * number of runs) + 1 points

a[0] : 3 * number of runs

0 <= i < number of runs:

a[3*i+1]: row number of the run i

a[3*i+2]: start column number of the
run i

a[3*i+3]: end column number of the
run i

The shape is returned in so called
runs. A run is a triple with the
following meaning:

run[0]: row number of the run

run[1]: start column number of the
run

run[2]: end column number of the
run

Q.VITEC ActiveX Controls

101

Visual Basic Example

Private Sub Command1_Click()

 Dim sObjectName As String

 Dim vShapeAdjusted As Variant

 Dim lStartEdge_X As Long

 Dim lStartEdge_Y As Long

 Dim lEndEdge_X As Long

 Dim lEndEdge_Y As Long

 sObjectName = "ED_B[1;1]"

 vShapeAdjusted = VisionQ400Control1.getShapeAdjusted(sObjectName)

 If TypeName(vShapeAdjusted) = "Empty" Then

 MsgBox (VisionQ400Control1.getLastErrorText)

 Else

 lStartEdge_X = vShapeAdjusted(0, 0)

 lStartEdge_Y = vShapeAdjusted(0, 1)

 lEndEdge_X = vShapeAdjusted(1, 0)

 lEndEdge_Y = vShapeAdjusted(1, 1)

 Debug.Print "Start (x/y): " & lStartEdge_X & " / " & lStartEdge_Y

 Debug.Print "End (x/y): " & lEndEdge_X & " / " & lEndEdge_Y

 End If

End Sub

Q.VITEC ActiveX Controls

102

2.9 Getting Checker Results

Some of the checkers of Vision Q.400, e.g. the feature extraction checker, generate a list of “objects”, and calculate
results of these objects. Because a result of an object can only be inserted into the spreadsheet if an object exists, it
may not be easy to insert results if the number of objects can vary, or is unknown at the time an application is created.
Because only results, which are inserted into the spreadsheet, can be accessed by the interfaces, e.g. by the method
getSpreadsheetData (), it may not be possible to access all results of all objects by an interface.

To overcome this problem, the methods getResult, getResultsObject, and getResultsObjects are introduced. At time,
these methods are only implemented for checkers, which generate a list of objects at their execution. E.g. they are not
implemented for the window checker.

The three methods are not synchronised and it is not tested if the data to be returned is valid. For example if a
checker is executed while one of these methods is called, the value(s) of an earlier execution of the checker may be
returned. The caller is responsible for synchronisation.

The method getResult is used to return results which belong directly to a checker, e.g. the result string of an OCR
checker, or the number of judged objects of a feature exctraction checker.

The method returns an VARIANT. The current type and meaning of this VARIANT depend on the concerning checker
and the result. The possible types of the VARIANT are:

VARIANT Type Meaning

VT_EMPTY Error

VT_R8 One double value

VT_BSTR One string value

The result of a ckecker is accessed by the result name displayed in the result property page of a checker. To achieve
the language independence of the ActiveX control, always the English names of the results have to be used.

To get all result names, which are supported by a checker type, you can call the method with it’s parameter
resultName set to “Result Names”. In this case the returned VARIANT contains a BSTR array, with all supported result
names.

The methods getResultsObject, and getResultsObjects are used to return results which belong to an object of the
checker, e.g. the area size of an object, or all objects, of a feature exctraction checker.

Both methods return an VARIANT. The current type and meaning of this VARIANT depend on the concerning checker
and the result. The possible types of the VARIANT are listed in the table below.

Q.VITEC ActiveX Controls

103

VARIANT Type Meaning

VT_EMPTY Error

VT_R8 | VT_ARRAY An array of double value

VT_BSTR | VT_ARRAY An array of string value

VT_VARIANT | VT_ ARRAY An array of VARIANTs. At time, this can only happen for
user defined checker dlls.

The methods getResultsObject, and getResultsObjects return always an array, even if this array contains only one
entry.

The results of an object are accessed by the column headers displayed in the result property page of an checker.
Because one column header can “contain” more than one result , e.g. the result “Gravity” of the feature extraction
checker contains a X – and a Y – coordinate, more than one value may be returned by one call of the above methods.

If a column header contains more than one result, the returned VT_ARRAY contains the values as they are listed from
left to right in the property page of a checker. E.g. if the result “Gravity” of the feature extraction checker is accessed,
the value at the index zero of the array is the X – coordinate, and the value at the index one is the Y – Coordinate.

To achieve the language independence of the ActiveX control, always the English names of the column headers has
to be used to access results of an object.

To get all column headers, which are supported by a checker type, you can call both methods with their parameter
colName set to “Column Names”. In this case the returned VARIANT contains a BSTR array, with all supported column
headers.

2.9.1 getResult(checkerName, resultName)

The method getResult returns the current value of the object independent checker result resultName. “Object
independent” means that the result is not calculateted from an checker object, but belongs to the checker itself. An
example of such an result is the result “Total Objects” of the feature extraction checker.

Return Value

VARIANT

The current type and meaning of this VARIANT depend on the concerning checker and the concerning result name.
The possible types of the VARIANT are listed in the table in the chapter Getting Checker Results.

The method returns an empty VARIANT if it fails. In this case, you can call the methods getLastErrorText() (or
getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] checkerName BSTR ActiveX name of the checker e.g. "FE[1;1]"

[IN] resultName BSTR
VT_BYR
xVT_BY
REF VT

 Name of the result which is accessed

Remarks

To get all result names, which are supported by a checker type, you can call the method with it’s parameter
resultName set to “Result Names”. In this case the returned VARIANT contains a BSTR array, with all supported result
names.

2.9.2 getResultsObject(checkerName, objectNumber, colName, numberResults)

Q.VITEC ActiveX Controls

104

The method getResultsObject returns the current value(s) under the column header colName of the object
objectNumber. If more than one value is listed under the column header colName, all these values are returned.

Return Value

VARIANT

The current type and meaning of this VARIANT depend on the concerning checker and the concerning header. The
possible types of the VARIANT are listed in the table in the chapter Getting Checker Results. If the requested column
header of the object contains more than one value, the returned array contains more than one value.

The method returns an empty VARIANT if it fails. In this case, you can call the methods getLastErrorText() (or
getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] checkerName BSTR ActiveX name of the checker e.g. "FE[1;1]".

[IN] objectNumber SHORT > 0 Number of the object, for which the result is accessed.

[IN] colName BSTR Column header of the object, for which the result is accessed.

[OUT] numberResults SHORT
*
VT_BYR
xVT_BY
REF VT

 Number of result values of the column header colName.

Remarks

This method is very helpful to access the results of an checker object, which does not exist at the creation time of an
application.

To get all column headers, which are supported by a checker type, you can call the method with the parameter
colName set to “Column Names”. In this case the returned VARIANT contains a BSTR array with all supported column
headers, and numberResults contains the number of column headers.

For the feature extraction checker, and (most) user defined checkers, two special results can be got, “Contour” and
“Region”:

Result Name Description VARIANT Type

Contour

The outermost contour of the object objectNumber
is returned. Outermost means, that holes are not
contained in the contour.

Countours are given by the coordinates of the
contour points, and the firts and the last point of a
contour are identical.

VT_ARRAY | VT_I4

a[0] : 2 * number of contour points

0 <= i < number of contour points:

a[2*i+1]: X-coordinate of contour point i

a[2*i+2]: Y-coordinate of contour point i

Region

The region of the object objectNumber is returned.

Regions are given in so called runs. A run is a triple
with the following meaning:

run[0]: row number of the run

run[1]: start column number of the run

run[2]: end column number of the run

VT_ARRAY | VT_I4

a[0] : 3 * number of runs

0 <= i < number of runs:

a[3*i+1]: row number of the run i

a[3*i+2]: start column number of the run i

a[3*i+3]: end column number of the run i

Q.VITEC ActiveX Controls

105

For the results “Contour” and “Region”, the value returned in numberResults is always 0.

For user defined checkers it depends on the definition of the checker if it supports the results “Contour” and/ or
“Region”.

2.9.3 getResultsObjects(checkerName, colName, numberObjects, numberResultsObject)

The method getResultsObjects returns the current value(s) under the column header colName of all objects of the
checker checkerName.

Return Value

VARIANT

The current type and meaning of this VARIANT depend on the concerning checker and the concerning header. The
possible types of the VARIANT are listed in the table in the chapter Getting Checker Results. The VARIANT does always
contain an array, even if only one object with one result value does exist. The array contains the result values of the
objects in the following order: all result values of object number one, all result values of object number two, and so
on.

The method returns an empty VARIANT if it fails. In this case, you can call the methods getLastErrorText() (or
getLastErrorNumber()) for further information.

Argument Type Range Description

[IN] checkerName BSTR ActiveX name of the checker e.g. "FE[1;1]".

[IN] colName BSTR Column header of the objects, for which the result is accessed.

[OUT] numberObjects SHORT
*
VT_BYR
xVT_BY
REF VT

 Number of objects.

[OUT] numberResultsObjec
t

SHORT
*
VT_BYR
xVT_BY
REF VT

 Number of result values of the column header colName.

Remarks

This method is very helpful to access the checker results of all objects of an checker at once.

To get all column headers, which are supported by a checker type, you can call the method with the parameter
colName set to “Column Names”. In this case the returned VARIANT contains a BSTR array with all supported column
headers,

numberObjects is one, and numberResultsObjects contains the number of column headers.

The number of entries in the array, which the returned VA RIANT contains, is numberResultsObject * numberObjects.

Q.VITEC ActiveX Controls

106

3 Events of the ActiveX Control VisionQ400Control

Visual Basic Example

When using Visual Basic you can select an event and Visual Basic automatically writes the first and the last line of the
body in your code editor window.

Neues Bild

The following example shows how to handle an event in Visual Basic based on the SignalReceived event.

Q.VITEC ActiveX Controls

107

Option Explicit

' Vision Q.400 Signals

Const VISIONQ400_SIG_UNKNOWN = 0

Const VISIONQ400_SIG_PCREND = 1

Const VISIONQ400_SIG_PCREND_OFF = 2

Const VISIONQ400_SIG_PCREADY = 4

Const VISIONQ400_SIG_PCREADY_OFF = 8

Const VISIONQ400_SIG_PCDATAREADY = 16

Const VISIONQ400_SIG_PCDATAREADY_OFF = 32

Const VISIONQ400_SIG_CHANGE_NOTIFY = 64

Const VISIONQ400_SIG_PCERROR = 256

Const VISIONQ400_SIG_STOP = 1024

Const VISIONQ400_SIG_START_LOST = 8192

Const VISIONQ400_SIG_START_LOST_OFF = 16384

Const VISIONQ400_SIG_START_RUNMODE = 65536

Const VISIONQ400_SIG_STOP_RUNMODE = 131072

Const VISIONQ400_SIG_ACTION_ERROR = 16777218

Const VISIONQ400_SIG_EXITING = 16777220

Private Sub VisionQ400Control1_SignalRecieved _

(ByVal signal As Long)

Select Case signal

Case VISIONQ400_SIG_PCREADY

Label1.BackColor = vbGreen

Case VISIONQ400_SIG_PCREADY_OFF

Label1.BackColor = vbRed

Case VISIONQ400_SIG_PCREND

Label2.BackColor = vbGreen

Case VISIONQ400_SIG_PCREND_OFF

Label2.BackColor = vbRed

Case VISIONQ400_SIG_PCDATAREADY

Label3.BackColor = vbGreen

Case VISIONQ400_SIG_PCDATAREADY_OFF

Label3.BackColor = vbRed

Case VISIONQ400_SIG_CHANGE_NOTIFY

Label4.BackColor = vbGreen

Case VISIONQ400_SIG_PCERROR

Label4.BackColor = vbGreen

Case VISIONQ400_SIG_START_LOST

Label5.BackColor = vbGreen

Case VISIONQ400_SIG_START_RUNMODE

Label6.BackColor = vbGreen

Case VISIONQ400_SIG_STOP_RUNMODE

Label6.BackColor = vbRed

Case VISIONQ400_SIG_ACTION_ERROR

Label7.BackColor = vbGreen

Case VISIONQ400_SIG_EXITING

Label8.BackColor = vbGreen

Case Else

End Select

End Sub

Q.VITEC ActiveX Controls

108

3.1 SignalRecieved(signal)

The event SignalRecieved is fired if the client has to process a signal.

Return Value

none

Argument Type Description

[IN] signal LONG The signal which has to be processed.

Remarks

The signals can have the following values:

Name Value Meaning

VISIONQ400_SIG_UNKNOWN 0x00000000 unknown signal

VISIONQ400_SIG_PCREND 0x00000001 PC Rend

VISIONQ400_SIG_PCREND_OFF 0x00000002 PC Rend Off

VISIONQ400_SIG_PCREADY 0x00000004 PC Ready

VISIONQ400_SIG_PCREADY_OFF 0x00000008 PC Ready Off

VISIONQ400_SIG_PCDATAREADY 0x00000010 PC Data Ready

VISIONQ400_SIG_PCDATAREADY_OFF 0x00000020 PC Data Ready Off

VISIONQ400_SIG_CHANGE_NOTIFY 0x00000040 application change notify

VISIONQ400_SIG_PCERROR 0x00000100 PC error

VISIONQ400_SIG_START_LOST 0x00002000 a start signal is lost

VISIONQ400_SIG_START_RUNMODE 0x00010000 Vision Q.400 steps into run mode

VISIONQ400_SIG_STOP_RUNMODE 0x00020000 Vision Q.400 steps into setup mode

VISIONQ400_SIG_ACTION_ERROR 0x01000002 Vision Q.400 ACTION error

VISIONQ400_SIG_EXITING 0x01000004 Vision Q.400 will exit

VISIONQ400_SIG_APP_LOADED 0x01000008 Vision Q.400 has loaded an application

VISIONQ400_SIG_APP_CLOSED 0x01000010 the current application in Vision Q.400 has been

 closed

Remarks

VISIONQ400_SIG_PCERROR:

If you receive this signal (the PC error signal), we do recommend to call getLastErrorText() to get information about
the error.

VISIONQ400_SIG_START_LOST:

If Vision Q.400 tried to start an application, because a client called the method startApplication(), this signal is not sent
to client which called the method.

VISIONQ400_SIG_EXITING:

If you recieve this signal, the ActiveX Control disconnected from Vision Q.400, because Vision Q.400 will exit.

You have not to call the method disconnectFromServer by yourself.

If Vision Q.400 will exit, because a client called the method exitServer(), this signal is not sent to client which called the
method.

VISIONQ400_SIG_APP_LOADED:

If you recieve this signal, Vision Q.400 has created or loaded a new application.

Q.VITEC ActiveX Controls

109

If Vision Q.400 loaded an application, because a client called the method openApplication(), this signal is not sent to
client which called the method.

VISIONQ400_SIG_APP_CLOSED:

If you recieve this signal, Vision Q.400 has closed the current application, and not loaded or created a new one. All
calls to Vision Q.400 will fail until a new application is loaded or created.

Visual Basic Example

Private Sub VisionQ400Control1_SignalRecieved(ByVal signal As Long)

 Select Case signal

 Case VISIONQ400_SIG_PCREADY

 cb_StartApp.Enabled = True

 Case VISIONQ400_SIG_PCREADY_OFF

 cb_StartApp.Enabled = False

 Case VISIONQ400_SIG_START_RUNMODE

 cb_StartRunMode.Enabled = False

 cb_StopRunMode.Enabled = True

 Debug.Print "Run-Mode"

 Case VISIONQ400_SIG_STOP_RUNMODE

 cb_StartRunMode.Enabled = True

 cb_StopRunMode.Enabled = False

 Debug.Print "Setup-Mode"

 End Select

End Sub

Q.VITEC ActiveX Controls

110

3.2 DataNumber(numberOfBlocks)

The event DataNumber is fired to inform how many data items are sent by the current execution of the application.

Return Value

none

Argument Type Description

 [IN] numberOfBlocks SHORT The number of sent data items.

Remarks

If an execution group is executed, the number of sent data items depends on the executed execution group, because
only data items, which “belong” to the executed group, are sent. (Execution group matters are decribed in the Vision
Q.400 reference manual in the chapter “Execution Groups”.)

If the whole application is executed, or execution groups are not used, the number of sent data items is the number of
entries (rows) in the “Selected Spreadsheet Cells” list of the OLE interface. (To show this list in Vision Q.400, click on
the OLE button of the spreadsheet.)

If data is not transferred (number of data items to be sent is zero), the event is not fired, except that the execution
group number is transferred (see DataExeGroupNumberRecieved()).

Visual Basic Example

Private Sub VisionQ400Control1_DataNumber(ByVal numberOfBlocks As Integer)

 Debug.Print numberOfBlocks

End Sub

Q.VITEC ActiveX Controls

111

3.3 DataInvalidRecieved(entryAt)

The event DataInvalidRecieved is fired if the client has to process invalid data. Invalid data occurs if data has to be
transferred, which belonging checker or formula produced an error:

If invalid data occurs, DataInvalidRecieved is sent instead of one of the other events DataLongRecieved(),
DataDoubleRecieved(), DataStringRecieved(), or DataBooleanRecieved().

Return Value

none

Argument Type Description

[IN] entryAt LONG The index of the entry (row) in the “Selected Spreadsheet Cells” list which belongs to the
Invalid data. (To show this list in Vision Q.400 click on the OLE button of the spreadsheet.)

Remarks

The parameter entryAt is only valid if in Format Data of the OLE interface “Data Container Index” is selected.
Otherwise entryAt is zero.

Visual Basic Example

Private Sub VisionQ400Control1_DataInvalidRecieved(ByVal entryAt As Long)

 Debug.Print entryAt

End Sub

Q.VITEC ActiveX Controls

112

3.4 DataLongRecieved(dataLong, entryAt)

The event DataLongRecieved is fired if the client has to process a long data.

Return Value

none

Argument Type Description

[IN] dataLong LONG The long value, which has to be processed.

[IN] entryAt LONG The index of the entry in the “Selected Spreadsheet Cells” list, which belongs to
dataLong.(To show this list in Vision Q.400, click on the OLE button of the spreadsheet.)

Remarks

The parameter entryAt is only valid if in Format Data of the OLE interface “Data Container Index” is selected.
Otherwise entryAt is zero. (See DataInvalidRecieved())

If data has to be transferred, which belonging checker or formula produced an error, the event DataLongRecieved is
not sent, but the event DataInvalidRecieved() is sent.

Visual Basic Example

Option Explicit

Dim LongData(0 To 4) As Long

Private Sub VisionQ400Control1_DataLongRecieved(ByVal dataLong As Long, ByVal entryAt As Long)

 LongData(entryAt) = dataLong

End Sub

Q.VITEC ActiveX Controls

113

Q.VITEC ActiveX Controls

114

3.5 DataDoubleRecieved(dataDouble, entryAt)

The event DataDoubleRecieved is fired if the client has to process a double data.

Return Value

none

Argument Type Description

[IN] dataDouble DOUBLE The double value, which has to be processed.

[IN] entryAt LONG The index of the entry in the “Selected Spreadsheet Cells” list, which belongs to
dataDouble.(To show this list in Vision Q.400, click on the OLE button of the
spreadsheet.)

Remarks

The parameter entryAt is only valid if in Format Data of the OLE interface “Data Container Index” is selected.
Otherwise entryAt is zero. (See DataInvalidRecieved())

If data has to be transferred, which belonging checker or formula produced an error, the event DataDoubleRecieved
is not sent, but the event DataInvalidRecieved() is sent.

Visual Basic Example

Private Sub VisionQ400Control1_DataLongRecieved(ByVal dataLong As Long, ByVal entryAt As Long)

 Debug.Print "Value " & dataLong

 Debug.Print "Index " & entryAt

End Sub

Q.VITEC ActiveX Controls

115

3.6 DataStringRecieved(dataString, entryAt)

The event DataStringRecieved is fired if the client has to process a string data.

Return Value

none

Argument Type Description

[IN] dataString LONG The string value, which has to be processed.

[IN] entryAt LONG The index of the entry in the “Selected Spreadsheet Cells” list, which belongs to
dataString.(To show this list in Vision Q.400, click on the OLE button of the spreadsheet.)

Remarks

The parameter entryAt is only valid if in Format Data of the OLE interface “Data Container Index” is selected.
Otherwise entryAt is zero.

If data has to be transferred, which belonging checker or formula produced an error, the event DataStringRecieved is
not sent, but the event DataInvalidRecieved() is sent.

Visual Basic Example

Private Sub VisionQ400Control1_DataStringRecieved(ByVal dataString As String, ByVal entryAt As Long)

 Debug.Print "Value " & dataString

 Debug.Print "Index " & entryAt

End Sub

Q.VITEC ActiveX Controls

116

3.7 DataBooleanRecieved(dataBoolean, entryAt)

The event DataBooleanRecieved is fired if the client has to process a boolean data.

Return Value

none

Argument Type Description

[IN] dataBoolean VARIANT_BOOL The Boolean value, which has to be processed.

[IN] entryAt LONG The index of the entry in the “Selected Spreadsheet Cells” list, which belongs
to dataBoolean.(To show this list in Vision Q.400, click on the OLE button of
the spreadsheet.)

Remarks

The parameter entryAt is only valid if in Format Data of the OLE interface “Data Container Index” is selected.
Otherwise entryAt is zero. (See DataInvalidRecieved())

If data has to be transferred, which belonging checker or formula produced an error, the event DataBooleanRecieved
is not sent, but the event DataInvalidRecieved() is sent.

Visual Basic Example

Private Sub VisionQ400Control1_DataBooleanRecieved(ByVal dataBoolean As Boolean, ByVal entryAt As Long)

 Debug.Print "Value " & dataBoolean

 Debug.Print "Index " & entryAt

End Sub

Q.VITEC ActiveX Controls

117

3.8 DataExeGroupNumberRecieved(exeGroupNumber)

The event DataExeGroupNumberRecieved is fired if the client has to process an execution group number.

Return Value

none

Argument Type Description

[IN] exeGroupNumber LONG The execution group number, which was processed by the last execution of the
application.

Remark

If the event DataNumber() is not fired, this event is not fired, too.

Execution group numbers are only transferred if in Format Data of the OLE interface “Exec.Grp. Numbers” is selected.

Even if no other data is transferred, the events DataNumber with numberOfBlocks equal to zero and
EndOfDataTransfer are fired.

Visual Basic Example

Private Sub VisionQ400Control1_DataExeGroupNumberRecieved(ByVal exeGroupNumber As Long)

 Debug.Print "Number of Execution Group: " & exeGroupNumber

End Sub

Q.VITEC ActiveX Controls

118

3.9 EndOfDataTransfer()

The event EndOfDataTransfer is fired if all data of the last start application is transferred.

Return Value

none

Argument

None

Remark

If data is not transferred (number of data items to be sent is zero), the signal is not fired, except that the execution
group number is transferred (see DataExeGroupNumberRecieved()).

Visual Basic Example

Private Sub VisionQ400Control1_EndOfDataTransfer()

 Debug.Print "End of data transfer"

End Sub

Q.VITEC ActiveX Controls

119

3.10 ImageAvaliable(cameraNumber, image)

The event ImageAvailable is fired to transfer the image of an camera.

Return Value

None

Argument Type Range Description

[IN] cameraNumber SHORT [1..12] The camera number for which the image (or a part of the image) is
transferred. May be less than or equal to zero.

[IN] image VARIANT VARIANT which contains the grey values of the image in a safe array of
type VT_UI1.

Remarks

ImageAvailable is only fired if the transfer of an image is enabled by the methods setSendImage() or
setSendImagePart().

ImageAvailable is a synchronised call, that mean, Vision Q.400 waits until ImageAvailable returns. Therefore it may be
better to store the image data and return immediately before a very time consuming processing is performed with the
data.

If cameraNumber is less than or equal to zero, the image with the appropriate positive number should be transferred
but could not. If this happens (see in the description of the the methods setSendImage() or setSendImagePart()), the
parameter image contains an empty VARIANT, and you can call the method getLastErrorText() (or
getLastErrorNumber()) for further information.

If cameraNumber is greater than zero, the transfer of the image has succeeded. In this case the safe array in the
VARIANT image can have one or two dimensions. (The dimension of the safe array can be changed by a call of the
method setProperty() with the parameter name set to “ImageBufferDim”.)

If the safe array has one dimension, it’s lower bound is always 0, and it’s upper bound is (number of columns * image
pixel size in Byte * number of rows) - 1.

The number of columns and the number of rows of the image, which should be transferred, can be querried by a call
to the method getProperty() with the name set to “TransferredImage”. The image pixel size in Byte can be querried by
a call to the method getProperty() with the name set to “ImagePixelSizeInByte”.

If the safe array has two dimensions, it has to be distinguished between the number of columns of the image, which
should be transferred, and the number of columns in the safe array: this number is “pixel size in Byte” times bigger
than the number of image columns. Only for an eight bit gray value image both values are the same. E.g. if for a RGB
color image 100 columns have to be transferred, the safe array contains 300 columns, because every image pixel
consists if three Byte.

The bounds of the first array dimension describe the number of Byte which are transferred for every column, and the
bounds of the second array dimension describe the number of rows which are transferred.

The lower bound of the first dimension contains the number of the first transferred image column, and the lower
bound of the second dimension contains the number of the first transferred image row. E.g if they are 10, and 20
respectively, the transferred image part starts at [10, 20].

The upper bound of the second dimension, which describes the transferred image rows, is the coordinate of the last
transferred row. E.g. if it is 45, the image rows 20..45 are transferred.

Q.VITEC ActiveX Controls

120

The upper bound of the first dimension depends not only on the number of transferred image columns, but also on
the size in Byte if an image pixel. Therefore, only for eight bit gray value images, this upper bound is the number of the
last transferred image column.

For not eight bit gray value images, the number of the last transferred column can be calculated as follows:

Number of transferred image columns = (upper bound – lower bound + 1) / image pixel size in Byte.

Number of last transferred column = (number of transferred image columns + number of first transferred column – 1).

E.g. if a RGB color image is transferred and the bounds of the first dimension are [20, 109], the number of the last
transferred image coloumn is 49:

Number of transferred image columns = (upper bound – lower bound + 1) / image pixel size in Byte

= (109 - 20 + 1) / 3 = 90.

Number of last transferred column = (number of transferred image columns + number of first transferred column – 1)

= 30 + 20 -1 = 49.

If the whole image is transferred, the lower bounds of the two array dimensions are always 0. The upper bounds of
the first dimension is the (number of image columns – 1) * image pixel size in Byte. The upper bounds of the second

dimension is the number of image rows – 1.

If the transferred image (part) is zoomed, the upper bounds of the array dimensions belong to the zoomed image and
may not be the values set by setSendImage() or setSendImagePart(): Vision Q.400 adapts the upper bounds to the
values needed after the zooming. The lower bounds are left unchanged.

If the transferred image is of type “Color” (see getProperty() with name ImageType), the three Byte values of a pixel
are inserted in the order <blue value>, <green value>, <red value> into the safe array.

Q.VITEC ActiveX Controls

121

3.11 ErrorOccurred(errorText)

The event ErrorOccurred may be fired if an error occurred in Vision Q.400. This event is independent from the
methods of VisionQ400Control and may occur at any time.

Return Value

none

Argument Type Description

[IN] errorText BSTR Text which describes the error.

Remarks

We strongly recommend to implement the event ErrorOccurred. Otherwise it can happen that Vision Q.400 does not
work anymore, but the client does not know this.

If you display a message box (or an other window) inside the event ErrorOccurred, the event does not return until the
message box is closed. But the ActiveX control VisionQ400Control cannot process other events or methods until an
event returns. Additionally, it may lead to a timeout error of Vision Q.400 if an event does not return.

If one of the methods of control VisionQ400Control fails, getLastErrorText() or getLastErrorNumber() have to be used
to get the correct error information, because the event ErrorOccurred is normally not sent in this case.

Visual Basic Example

Private Sub VisionQ400Control1_ErrorOccurred(ByVal errorText As String)

 Debug.Print "Error: " & errorText

End Sub

Q.VITEC ActiveX Controls

122

4 Functionality: ActiveX Control VisionQ400Goodies Control

The ActiveX Control VisionQ400Goodies is a collection of useful methods. In contrast to the control VisionQ400Control
it can be used without Vision Q.400.

VisionQ400Goodies offers methods for

- writing a bitmap to a file.

The chapters Naming Convention and A Note on Visual Studio of the ActiveX Control VisionQ400Control apply to the
the ActiveX Control VisionQ400Goodies, too.

To use the control in Visual Studio on a 64 Bit system, the file VisionQ400Goodies_32.ocx found in the installation
directory of Vision Q.400 has to be registered.

Q.VITEC ActiveX Controls

123

5 Methods of the ActiveX Control VisionQ400Goodies Control

Q.VITEC ActiveX Controls

124

5.1 savePixelValuesAsBitmap1(pixelValues, numberOfColumns,
pixelType, fileName, comment)

The method savePixelValuesAsBitmap1 writes an image, given as gray value or color image, to a bitmap file.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeed, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] pixelValues VARIANT A one dimensional safe array which contains the pixel values to be written.

[IN] numberOfColumns LONG The number of columns of the image. The number of rows is internally
calculated.

[IN] pixelType BSTR The type of the pixels:

“Gray” for 8 Bit gray value images.

“Color” for 24 Bit color images.

[IN] filename BSTR The name of the file to which the image has to be written.

[IN] comment BSTR An additional comment to be written into the file. Comment can be the empty
string.

Remarks

The VARIANT pixelValues must contain a safe array of type VT_UI1. For gray images, it has to contain one byte for
every pixel. For color images, it has to contain three byte for every pixel, in the sequence blue, red, green byte.

The number of rows of the image is calculated from the size of the safe array and the value of the parameter
numberOfColoumns.

If filename contains an extension, it has to be “.bmp, otherwise an error will occur. If filename does not contain an
extension, the extension “.bmp” will be appended to it before the image is written.

If the length of comment exceeds 4000 characters, comment is truncated to 4000 characters.

Q.VITEC ActiveX Controls

125

5.2 savePixelValuesAsBitmap2(pixelValues, pixelType, fileName,
comment)

The method savePixelValuesAsBitmap2 writes an image, given as gray value or color image, to a bitmap file.

Return Value

VARIANT_BOOL

The return value is TRUE if the methods succeed, otherwise FALSE. If the return value is FALSE, you can call the
methods getLastErrorText() (or getLastErrorNumber()) for further information.

Argument Type Description

[IN] pixelValues VARIANT A two dimensional safe array which contains the pixel values to be written.

[IN] pixelType BSTR The type of the pixels:

“Gray” for 8 Bit gray value images.

“Color” for 24 Bit color images.

[IN] filename BSTR The name of the file to which the image has to be written.

[IN] comment BSTR An additional comment to be written into the file. Comment can be the empty string.

Remarks

The VARIANT pixelValues must contain a safe array of type VT_UI1. It must have two dimensions. For gray images, it
has to contain one byte for every pixel. For color images, it has to contain three byte for every pixel, in the sequence
blue, red, green byte.

The number of columns of the image is calculated from the size of the first dimension of the safe array and the size of
one pixel value in byte.

The number of rows of the image is the size of the second dimension of the safe array.

If filename contains an extension, it has to be “.bmp, otherwise an error will occur. If filename does not contain an
extension, the extension “.bmp” will be appended to it before the image is written.

If the length of comment exceeds 4000 characters, comment is truncated to 4000 characters.

Q.VITEC ActiveX Controls

126

5.3 getLastErrorText():

The method getLastErrorText returns an explaining text for the last error.

Return Value

BSTR

The explaining text of the last error, or if no error occurred, the empty string.

Argument

none

Remarks

You have to call this method immediately after an error occurred, otherwise a wrong (newer) error text may be
returned.

Q.VITEC ActiveX Controls

127

5.4 getLastErrorNumber():

The method getLastErrorNumber returns the number of the last error.

Return Value

LONG

The number of the last error, or if no error occurred, 0.

Argument

none

Remarks

You have to call this method immediately after an error occurred, otherwise a wrong (newer) error number may be
returned.

This method has to be called before getLastErrorText, because getLastErrorText may clear the error number, but
getLastErrorNumber does not.

Normally the explaining text got by getLastErrorText may be enough information, but sometimes the error number
may be needed. In this case, it is an good idea to get the error number first, to handle some of the numbers, and to
call getLastErrorText for the not handled errors afterwards.

Q.VITEC ActiveX Controls

128

Q.VITEC ActiveX Controls

129

Appendix A: VARIANT Type Conversion in Vision Q.400

If a Vision Q.400 method needs a VARIANT as input parameter, in the description of the method is given, which data
type the VARIANT should contain. If possible, Vision Q.400 converts the data given in the VARIANT in the requested
data type.

The following tables describe the possible conversions.

Requested Data Type Given Data Type Remarks

VT_BOOL VT_BOOL

VT_UI1

VT_UI2

VT_UI4

VT_UI8

VT_I1

VT_I2

VT_I4

VT_I8

VT_R4

VT_R8

VT_UINT

VT_INT

A value of 0 or VARIANT_FALSE is
converted to FALSE.

A value if 1 or VARIANT_TRUE is
converted to TRUE.

Otherwise an error will occur.

VT_BSTR A value of “false” or “FALSE” is
converted to FALSE.

A value of “true” or “TRUE” is
converted to TRUE.

All other values are converted into
a VT_R8 value, and than converted
like a VT_R8 value. If they cannot
be converted into a VT_R8 value, an
error will occur.

Requested Data Type Given Data Type Remarks

VT_BSTR VT_BSTR

VT_BOOL VARIANT_FALSE -> “FALSE”

VARIANT_TRUE -> “TRUE”

VT_UI1

VT_UI2

VT_UI4

VT_UI8

VT_I1

VT_I2

VT_I4

VT_I8

VT_R4

VT_R8

VT_UINT

VT_INT

The given value is converted into a

VT_R8 value, and this value is
converted into a string. If the given
value cannot be converted into a
VT_R8 value, an error will occur.

Q.VITEC ActiveX Controls

130

Requested Data Type Given Data Type Remarks

VT_UI1

VT_UI2

VT_UI4

VT_UI8

VT_I1

VT_I2

VT_I4

VT_I8

VT_UINT

VT_INT

VT_UI1

VT_UI2

VT_UI4

VT_UI8

VT_I1

VT_I2

VT_I4

VT_I8

VT_UINT

VT_INT

The given value has to fit in the
data range of the requested data
type.

Otherwise an error will occur.

VT_BOOL VARIANT_FALSE -> 0

VARIANT_TRUE -> 1

VT_BSTR If the given string can be converted
in a valid double value this
conversion is done. The converted
value has to fit in the data range of
the requested data type, too.

Otherwise an error will occur.

VT_R4

VT_R8

The given value has to fit in the
data range of the requested data
type, and it has to be an integer
value. (Its fractional part has to be
zero.)

Otherwise an error will occur.

Requested Data Type Given Data Type Remarks

VT_R4

VT_R8

VT_UI1

VT_UI2

VT_UI4

VT_UI8

VT_I1

VT_I2

VT_I4

VT_I8

VT_UINT

VT_INT

The given value has to fit in the
data range of the requested data
type.

Otherwise an error will occur.

VT_BOOL VARIANT_FALSE -> 0.0

VARIANT_TRUE -> 1.0

VT_BSTR If the given string can be converted
in a valid double value this
conversion is done. The converted
value has to fit in the data range of
the requested data type, too.

Otherwise an error will occur.

	Vision Q.400
	Table of Contents
	1 Functionality: ActiveX Control VisionQ400Control
	1.1 Naming Convention
	1.2 A Note on Visual Studio

	2 Methods of the ActiveX Control VisionQ400Control
	2.1 General Methods
	2.1.1 connectToServer(sleepTime)
	2.1.2 disconnectFromServer(saveSettingsSetupMode)
	2.1.3 exitServer()
	2.1.4 getState()
	2.1.5 getProperty(name, parameter)
	2.1.5.1 Accessing the Parallel I/O Channnels
	2.1.5.2 User Rights Management

	2.1.6 setProperty(name, parameter, values)
	2.1.6.1 Accessing the Parallel I/O Output Data Channnels
	2.1.6.2 User Rights Management

	2.1.7 interruptStartSignals(inhibit)
	2.1.8 showServer(show)
	2.1.9 startRunMode()
	2.1.10 stopRunMode()

	2.2 Application Methods
	2.2.1 changeApplication(appNumber)
	2.2.2 changeApplicationByName(applicationName)
	2.2.3 getApplicationProperty(property)
	2.2.4 getDependentFileNames(navFileName, resultValue)
	2.2.5 openApplication(applicationName, saveLastOpen)
	2.2.6 saveApplicationAs(fileName)
	2.2.7 startApplication(groupNumber, lockGrab)
	2.2.8 stopAutoRestart()
	2.2.9 setUserData(userDataName, userData)
	2.2.10 getUserData(userDataName, userData)

	2.3 Spreadsheet Methods
	2.3.1 changeResultName(oldName, newName)
	2.3.2 getDataCount()
	2.3.3 getDataColoumnName(entryAt)
	2.3.4 getDataResultName(entryAt)
	2.3.5 getSpreadsheetColumnNames()
	2.3.6 getSpreadsheetData (rowName, colName, dataType, data)
	2.3.7 resetSpreadSheetStatistics()
	2.3.8 setCalibrationValue(attribName, valToSet)
	2.3.9 setOcxReference(attribName, newRef)
	2.3.10 setSpreadSheetLimit(attribName, valToSet, upper)

	2.4 Image Methods
	2.4.1 getImageSize(cameraNumber, numberOfCols, numberOfRows)
	2.4.2 setSendImage(cameraNumber)
	2.4.3 setSendImagePart(cameraNumber, startPointX, startPointY, width, height)
	2.4.4 setZoomImageScale(cameraNumber, scaleX, scaleY, interpolaition)
	2.4.5 setZoomImageSize(cameraNumber, width, height, interpolaition)
	2.4.6 getImage(cameraNumber)
	2.4.7 removeSendImage(cameraNumber)
	2.4.8 loadCameraImage(cameraNumber, fileName)
	2.4.9 saveCameraImage(cameraNumber, fileName)

	2.5 Error Handling Methods
	2.5.1 getLastErrorNumber()
	2.5.2 getLastErrorText()

	2.6 getParameter(checkerName, parameterName)
	2.6.1 Checker
	2.6.1.1 Common Parameters
	2.6.1.1.1 Thresholding
	2.6.1.1.2 Image Filters

	2.6.1.2 Window Checker
	2.6.1.3 Feature Extraction Checker
	2.6.1.4 Binary Edge Detection Checker
	2.6.1.5 Gray Edge Detection Checker
	2.6.1.6 Difference Checker
	2.6.1.7 Contour Matching
	2.6.1.8 Correlation Matching
	2.6.1.9 OCR Checker
	2.6.1.10 Code Reader
	2.6.1.11 Edge Detection Gray Value Projection
	2.6.1.12 Identifier Checker

	2.6.2 Shapes
	2.6.2.1 Common Parameters
	2.6.2.2 Shape Line ->
	2.6.2.3 Shape Rectangle
	2.6.2.4 Shape Rectangle ->
	2.6.2.5 Shape Ellipse (Circle)
	2.6.2.6 Shape Ellipse -> (Circle ->)
	2.6.2.7 Shape Doughnut
	2.6.2.8 Shape Doughnut ->
	2.6.2.9 Shape Polygon
	2.6.2.10 Object Shape
	2.6.2.11 Additional Shapes
	2.6.2.11.1 Template Shape

	2.7 setParameter(checkerName, parameterName, parametervalues)
	2.7.1 General Remarks
	2.7.2 Checker
	2.7.2.1 Common Parameters
	2.7.2.1.1 Thresholding
	2.7.2.1.2 Image Filters

	2.7.2.2 Window Checker
	2.7.2.3 Feature Extraction Checker
	2.7.2.4 Binary Edge Detection Checker
	2.7.2.5 Gray Edge Detection Checker
	2.7.2.6 Difference Checker
	2.7.2.7 Contour Matching
	2.7.2.8 Correlation Matching
	2.7.2.9 OCR Checker
	2.7.2.10 Code Reader
	2.7.2.11 Edge Detection Gray Value Projection
	2.7.2.12 Identifier Checker
	2.7.2.13 Position and Rotation Adjustment Checker

	2.7.3 Shapes
	2.7.3.1 Shape Line ->
	2.7.3.2 Shape Rectangle
	2.7.3.3 Shape Rectangle ->
	2.7.3.4 Shape Ellipse (Circle)
	2.7.3.5 Shape Ellipse -> (Circle ->)
	2.7.3.6 Shape Doughnut
	2.7.3.7 Shape Doughnut ->
	2.7.3.8 Shape Polygon
	2.7.3.9 Shape Object Shape
	2.7.3.10 Additional Shapes
	2.7.3.10.1 Template Shape

	2.8 Shape Methods
	2.8.1 getShapeAdjusted(CheckerName)

	2.9 Getting Checker Results
	2.9.1 getResult(checkerName, resultName)
	2.9.2 getResultsObject(checkerName, objectNumber, colName, numberResults)
	2.9.3 getResultsObjects(checkerName, colName, numberObjects, numberResultsObject)

	3 Events of the ActiveX Control VisionQ400Control
	3.1 SignalRecieved(signal)
	3.2 DataNumber(numberOfBlocks)
	3.3 DataInvalidRecieved(entryAt)
	3.4 DataLongRecieved(dataLong, entryAt)
	3.5 DataDoubleRecieved(dataDouble, entryAt)
	3.6 DataStringRecieved(dataString, entryAt)
	3.7 DataBooleanRecieved(dataBoolean, entryAt)
	3.8 DataExeGroupNumberRecieved(exeGroupNumber)
	3.9 EndOfDataTransfer()
	3.10 ImageAvaliable(cameraNumber, image)
	3.11 ErrorOccurred(errorText)

	4 Functionality: ActiveX Control VisionQ400Goodies Control
	5 Methods of the ActiveX Control VisionQ400Goodies Control
	5.1 savePixelValuesAsBitmap1(pixelValues, numberOfColumns, pixelType, fileName, comment)
	5.2 savePixelValuesAsBitmap2(pixelValues, pixelType, fileName, comment)
	5.3 getLastErrorText():
	5.4 getLastErrorNumber():

	Appendix A: VARIANT Type Conversion in Vision Q.400

